
EXPANDING PORT COUNT USING A 4-PORT SPACEWIRE ROUTER

Session: SpaceWire Components

Short Paper

Jennifer Larsen

Aeroflex Colorado Springs
4350 Centennial Blvd. Colorado Springs, CO 80907

E-mail: Jennifer.Larsen@aeroflex.com

ABSTRACT

The UT200SpW4RTR[2] is a four port SpaceWire router that is capable of operating

at data rates from 10 to 200 Mbps, supporting path, logical, and group adaptive

routing and offers an effective and simple solution to many networking requirements.

This router has a total of 5 ports, 4 are SpaceWire compatible ports and the 5
th

 is a

parallel HOST port.

The HOST port allows access to the routers configuration and status registers as well

as access to any of the 4 SpaceWire ports. Data may be passed from the HOST port

to the SpaceWire ports and vice versa. HOST ports of multiple UT200SpW4RTR

devices may be interfaced together using an FPGA which will route data between

multiple routers. The interfacing FPGA will need to contain logic that will support

reads and writes from the UT200SpW4RTR HOST ports as well as a lookup table

block. The look up table block will contain the routing information such that data can

be passed to and from the HOST ports of multiple routers.

1 UT200SPW4RTR BASIC FUNCTIONALITY

The Aeroflex 4-port router implements a non-blocking crosspoint switch and a

"Round Robin" arbitration scheme allowing all 5 receive ports access to all 5 transmit

ports. Path and logical addressing are supported per ECSS-E-ST-50-12C [1], and

lookup table storage is replicated five times giving each receive port a dedicated block

of memory for logical addressing. Configuration of lookup tables, as well as access to

internal registers may occur through any of the 5 ports using a simple configuration

protocol. A group adaptive function is also provided for 2 ports when implementing

logical addressing.

Each of the four SpaceWire ports is capable of running at an independent speed. This

allows for systems to be configured with nodes/instruments running at different

speeds.

The HOST port of the 4-port router is composed of both a receive and transmit FIFO.

The transmit FIFO (inputs to router) are write capable by the external hardware. Full

and Almost Full flags are provided to help the user prevent overwriting the FIFO and

should be monitored by external hardware or the interfacing FPGA. Data will be

Expanding Port Count Using A 4-Port SpaceWire Router

135

written into the FIFO on the rising edge of the clock when /TX_PUSH is “Low”. The

receive FIFO (outputs from router) receives data from one of the SpaceWire ports and

is then read from the receive FIFO on the rising edge of the system clock when

/RX_POP is “High”. FIFO status flags Almost Empty and Empty flags are provided

for proper data management.

The HOST port transmit interface is connected to a read logic block that controls

SpaceWire data flow and determines the addressing scheme being used for the packet

received, where as the HOST port receive interface is connected to a write logic

block to the receive FIFO interface. Each of the SpaceWire ports on the

UT200SpW4RTR contain a read logic block. The basic concept of the read and a

write logic blocks should be replicated in the FPGA.

Read logic blocks are connected to each of the SpW ports as well as a the HOST port.

The SpaceWire ports read logic block have internal FIFO monitor flags that can not

be accessed externally. The read logic block monitors the empty flag on the receive

FIFO and reads a byte of data whenever the FIFO is not empty. This block also

checks the first byte of data after an EOP to determine the port address or whether a

configuration transaction will be initiated. For Path or Logical addressing, the Read

Logic Block uses the first byte of data after an EOP/EEP.

The write logic blocks control the data to the transmit FIFOs and the HOST receive

port and the SpW transmit ports. A "Round Robin" arbiter manages access and

makes sure only one Read Logic Block accesses the Write Logic Block. If more than

one receive ports is waiting to send data out of the same output port, the arbiter gives

each receive port equal opportunity for access.

The arbiter starts counting whenever a request for that port is received from any of the

five receive ports. The count is from Port 1, Port 2, etc, until the count reaches Port 5,

looks for configuration commands, and then starts over. The configuration block will

be accessing the Write Logic Block when read configuration packets are requested.

The HOST port of the UT200SpW4RTR will allow the system designer to interface

multiple 4-port routers together with out compromising the count of the SpaceWire

capable ports.

2 SYSTEM ARCHITECTURE

Figure 2 shows a notional diagram using three UT200SpW4RTR routers interfaced to

an FPGA, a microprocessor could be controlling the system. This example generates

a 12-port router using three 4-port routers. These concepts can be applied to generate

a router with a larger port count.

The interfacing FPGA should contain a look up table space that is responsible for

routing data between the HOST ports of the 4-port routers, as well as, read and write

logic blocks as described insection1.0. The look up table space should be configured

such that a given logical address will be routed to the HOST port of the destination 4-

port router. The look up space can be sized based on the number of 4-port routers

being interfaced to the FPGA.

SpaceWire Components

136

FPGA

rd_Logic_2

rd_Logic_0

wr_Logic_0

wr_Logic_1

wr_Logic_2

rd_Logic_1

Look Up Table
Write

look_up_1
Ram Block

8

we1

din1

Configuration Space

arbiter

arbiter

arbiter

look_up_2
Ram Block

look_up_3
Ram Block

TX_DATA[8:0], TX_PUSH, TX_FULL, TX_AFULL

SpaceWire Port 5

SpaceWire Port 6

SpaceWire Port 7

SpaceWire Port 8

ROUTER 1
RX_DATA[8:0], RX_POP, RX_EMPTY,

RX_AEMPTY

RX_DATA[8:0], RX_POP, RX_EMTY, RX_AEMTY

TX_DATA[8:0], TX_PUSH, TX_FULL,
TX_AFULL

RX_DATA[8:0], RX_POP, RX_EMPTY,
RX_AEMPTY

we2
din2

we3

din3

SpaceWire Port 1

SpaceWire Port 2

SpaceWire Port 3

SpaceWire Port 4

ROUTER 0

SpaceWire Port 9

SpaceWire Port 10

SpaceWire Port 11

SpaceWire Port 12

ROUTER 2

TX_DATA[8:0], TX_PUSH, TX_FULL,
TX_AFULL

Additional Logic

Figure 2. Notional Diagram of FPGA requirements

The HOST port interfaces of the UT200SpW4RTR devices, including

TX_DATA[8:0], /TX_PUSH, TX_FULL, TX_AFULL, RX_DATA[8:0], /RX_POP,

RX_EMPTY, RX_AEMPTY, should be connected to the FPGA for data transfer and

status monitoring. The read and write logic blocks will control the flow of data from

one HOST port to the other. Figure 3 shows a block diagram of the main logic block

requirements needed to handle arbitration, routing, and data transfer in the FPGA.

Table 1 shows an example of the contents required for the FPGA look up table space.

Each of the 12 SpW ports and 3 HOST ports requires a unique look up table location,

to ensure proper data routing. Using Table 1, assume SpaceWire port 6 (port 2 on

Router 1) has data that needs to be routed to SpaceWire port 11 (port 3 on Router 2).

A packet with header 0x30 is sent to Port 6. Router 1 decodes lookup table address

0x30 and sees that data should be sent to the HOST port or local port 5 of Router 1.

The FPGA rd_Logic_1 read logic block decodes packet header 0x30 and sees that

data should be sent to Router 2 wr_logic_2. Router 2 HOST port decodes lookup table

address 0x30 and sees that data should be sent to Port 11 (port 3 on Router 2). The

data packet will be routed out on Port 11 of the expanded router.

Table 1. Example Lookup Table Space.

Address Router 0 Router 1 Router 2 FPGA SpW Port

0x20 1 HOST HOST 1 1

0x21 2 HOST HOST 1 2

0x22 3 HOST HOST 1 3

0x23 4 HOST HOST 1 4

0x24 HOST 1 HOST 2 5

0x25 HOST 2 HOST 2 6

0x26 HOST 3 HOST 2 7

0x27 HOST 4 HOST 2 8

0x28 HOST HOST 1 3 9

0x29 HOST HOST 2 3 10

0x30 HOST HOST 3 3 11

0x31 HOST HOST 4 3 12

Expanding Port Count Using A 4-Port SpaceWire Router

137

3 SYSTEM PERFORMANCE CONSIDERATIONS

The routing of SpW data to and from each of the router devices should follow a flow

similar to that shown in Figure 3. The flow in Figure 3 may be modified to optimize

data through put and overall system efficiency.

The flow of data to the interfacing FPGA can start with the FPGA in idle state, where

the /RX_POP FIFO flag is being monitored for incoming data. Once a /RX_POP

FIFO flag is asserted active low, the FPGA will decode which 4-port router has the

active /RX_POP flag. After the active router is identified the FPGA starts registering

the data present on the RX_DATA[8:0] lines until an End of Packet (EOP) is

received.

When an EOP is received the first byte of data needs to be examined. The first byte

of data should contain the logical look up information as described in Table 1. Byte 1

will then be compared to the FPGA Logical Look up table address such that the data

will be routed to the correct destination 4-port router.

Assuming the first byte of data contains a valid router address the FPGA needs to

monitor the corresponding 4-port routers TX_FULL to ensure that there is available

space in the routers HOST transmit FIFO. The FPGA then asserts the corresponding

4-port routers /TX_PUSH FIFO flag, this starts the transfer of data from the FPGAs

register to the destination 4-port router. Once an EOP has been received by the

destination 4-port router the FPGA returns to the idle state and wait for the next data

transaction to occur.

TX_PUSH

TX_DATA[0:8]
(POP FPGA Data)

STATE_IDLE

Register Data
(PUSH FPGA FIFO)

EOP
P 1 0 1

RX_POP
(Router N)

RX_POP
(Router N)

STATE_3

0

0

0

1

1

POP 1st BYTE
(Header Delete)

STATE_2

GO to Lookup
Table

ACK
(Valid Address)

STATE_4
(Router N)

TX_FULL
(Router N)

EOP
P 1 0 1

1

1 0

1

0

0 1 Go To
STATE_IDLE

Router 0
Router 1
Router 2

STATE_5

Router 0
Router 1
Router 2

RST

STATE_1

Router N
(Clock Boundary)

Address

RX_POP

Figure 3. FPGA Data Handling Flow Diagram

SpaceWire Components

138

4 CONCLUSION

Interfacing multiple UT200SpW4RTRs together using the HOST port offers a simple

solution to increase port count. The HOST ports should be interfaced together using a

FPGA that will act as an arbiter, equipped with look up tables, between the multiple

UT200SpW4RTR devices.

The interfacing FPGA needs to contain logic supporting reads and writes to and from

the HOST ports read and write FIFOs. There will be a look up table block which

contain the routing information such that data can be passed to and from the HOST

ports of multiple routers.

5 REFERENCES

[1] ESA Publications Division, “SpaceWire Standard Document ECSS-E-ST-50-

12C”, The Netherlands, July 30, 2008.

[2] Aeroflex, “UT200SpW4RTR 4-port SpaceWire Router Datasheet”, Colorado

Springs, Colorado, February 2010.

Expanding Port Count Using A 4-Port SpaceWire Router

139

