
SPACEWIRE RMAP IP CORE

Session: SpaceWire Components

Long Paper

Chris McClements

STAR-Dundee, c/o School of Computing, University of Dundee, Dundee, Scotland,
UK

Steve Parkes

University of Dundee, School of Computing, Dundee, Scotland, UK
E-mail: chris@star-dundee.com, sparkes@computing.dundee.ac.uk

ABSTRACT
The SpaceWire RMAP core is a VHDL IP core implementing the Remote Memory
Access Protocol (RMAP). RMAP has been defined by the SpaceWire Working Group
and standardised by the European Cooperation for Space Standarization (ECSS) as
standard number ECCS-E-ST-50-52C. RMAP allows devices to read and write from
memory spaces in a standard way, increasing device interoperability and reducing
development time. The SpaceWire RMAP IP core provides a well tested, easy to use
core for systems that need RMAP capability.

1 INTRODUCTION
The RMAP IP core was developed by the University of Dundee under contract from
the European Space Agency (ESA). It is available from ESA for use on European
space missions or projects and available from STAR-Dundee for other applications.
The core is highly configurable and can be used as an RMAP target or initiator. The
core can be implemented in a number of technologies, including various radiation
tolerant FPGAs.

2 BACKGROUND
The Remote Memory Access Protocol (RMAP) standard is now available from the
ECSS website as ECCS-E-ST-50-52C [1]. The RMAP standard was written by the
University of Dundee with support from members of the SpaceWire Working Group.
RMAP is a SpaceWire protocol that provides a standard mechanism for reading from,
and writing, to memory in a remote SpaceWire node. The RMAP protocol has already
been designed into the ESA SpW-10X router ASIC [2] and into missions like Bepi-
Colombo [3][4], MMS [5], and ExoMars rover [6].

SpaceWire RMAP IP Core

101

3 RMAP IP CORE OVERVIEW

3.1 FUNCTION

There are two main functions which can be selected by configuration at synthesis
time. The first type is referred to as the “initiator” RMAP Interface which sends out
RMAP commands and receives replies. The second type is the “target” RMAP
Interface which receives RMAP commands, executes them and sends out any required
replies. The RMAP core has a wrapper which connects to the ESA/Dundee
SpaceWire-b core [7] [8] which handles the SpaceWire point-to-point link protocol.
The RMAP core target and initiator functions are illustrated in Figure 1. The core is
shown in three configurations; target only, initiator only or both.

Figure 1: RMAP IP core Data Flow

RMAP commands are initiated in the initiator user logic, encoded as RMAP packets
in the “Initiator RMAP Interface”, sent over the SpaceWire link as an RMAP packet,
decoded by the “Target RMAP Interface” and data or information is passed to the
target user logic after authorisation of the command. The “Target RMAP Interface”
formats an RMAP reply packet which is sent over the SpaceWire interface, decoded
by the “Initiator RMAP Interface” and the reply data/status information is passed to
the initiator user logic.

3.2 ARCHITECTURE

The architecture of the RMAP core is illustrated in Figure 2. The SpaceWire CODEC
implements the SpaceWire serial point to point protocol, ECSS-E-ST-50-12C [9], and
provides FIFO ports to the Protocol Input and Output blocks. The Protocol Input and
Output blocks determine the destination of packets dependent on the packet header.
The protocol handlers can bypass data from the RMAP core if the protocol identifier
does not identify the packet as an RMAP packet.

SpaceWire Components

102

Figure 2: RMAP IP core Architecture

The Target RMAP Interface decodes RMAP command packets, reads or writes data
from the host bus and returns RMAP reply packets. If the RMAP command is a
verified write command the target writes the command data to the verify buffer before
it is transferred to host memory. The Initiator RMAP Interface accepts commands into
the initiator transaction table, encodes RMAP command packets, decodes reply
packets and outputs status information. The target and initiator interact with the user
memory space using DMA controllers.

3.3 MEMORY INTERFACE

The RMAP controller interface to memory is modelled on the AMBA AHB bus
standard which provides a pipelined control/data bus transfer model. Data is
transferred to and from the bus in bursts using internal burst FIFOs in the RMAP core.
The bus can be configured for different bus size widths, byte order and bit swapping
operations.

3.4 CONFIGURATION

The RMAP core is configured using VHDL generics. The configuration options of the
core include the ability to implement target only logic, initiator only logic, or both
target and initiator; configuration of the host bus width, the burst transfer depth and
the byte/bit ordering of the RMAP packet data; watchdog timer on bus transfers;
maximum number of outstanding initiator commands and therefore the initiator
transaction table size; configuration of the internal FIFO sizes and the target verify
buffer size.

4 USING THE RMAP CORE

4.1 TARGET

The target command logic is responsible for decoding RMAP command packets and
executing the specified command, e.g. write. RMAP command headers are checked

SpaceWire RMAP IP Core

103

for validity and the set of RMAP command authorisation parameters are passed to the
host for authorisation. The host can check the memory address, command and other
parameters, and decide to authorise or discard the command. When the RMAP
command is a write command, and authorisation has been given by the host, data is
placed in user memory by the target DMA controller.

The target reply logic is responsible for sending RMAP reply packets with the status
of commands and additional data when a read command is performed. The status is
dependent on the validity of the RMAP command packet and the authorisation
response of the host. Reply data is read from the host user memory by the DMA
controller and sent in the RMAP reply packet.

4.2 INITIATOR

The RMAP Initiator Handler uses several memory structures inside the RMAP core
and inside initiator user memory. The structures are used to control the passing of
commands from initiator user memory to the RMAP core and the passing of replies
from the RMAP core to initiator user memory. The RMAP initiator data structures
and data flow is depicted in Figure 3.

Figure 3: Initiator Data Structures

SpaceWire Components

104

In the initiator user memory there are four possible memory areas or buffers
associated with each RMAP command: transaction details record, header information,
write data, and reply data.

The transaction details array holds the following information: a pointer to the
command header in user memory, a pointer to any data to be sent with a write or read-
modify-write command, a pointer to the memory location for sent notification, a
pointer to space for a reply to a read or read-modify-write command, a pointer to the
memory location for reply notification, the length of data to be read or written and the
reply time-out value.

The header information buffer holds the RMAP command header information
including the target SpaceWire address and the reply address. The write data buffer
holds any data to be sent with a write or read-modify-write command. The reply data
buffer is reserved space into which any data associated with a read or read-modify-
write command will be written. The length of the buffer is given by the data length
field and will not be overwritten by the core, even when a read reply packet is
received with more data than is in the buffer or the RMAP header record data length
field is greater than the transaction record data length.

4.3 SENDING A COMMAND

To send an RMAP command the host sets up the header of the command in a header
information buffer, any data to be sent with the command in a write data buffer and
space for any reply in a reply data buffer. The user then creates a transaction record
with pointers to the header information buffer, write data buffer and reply data buffer
along with information about the amount of data in these buffers. It also provides
pointers to memory locations (or registers) where sent and reply notifications are to be
made. Finally it adds into the transaction record a reply time-out value which is set in
micro seconds or can also be infinite. Once the transaction record is complete the
initiator user application informs the RMAP core that is has an RMAP command to
send and passes the RMAP core a pointer to the corresponding transaction record.

If the transaction details record flags field indicates that the command is expecting a
reply the command is not started (sent) until there is room for another transaction in
its outstanding transaction array. The RMAP core will then send the command by
copying the header information from user memory to the SpaceWire interface, adding
any detail necessary (e.g. header CRC). The header information checked for errors
before sending begins. Any errors which are detected in the header are recorded and
output on the status interface and to the notify sent register, if used.

If there is any write data to be sent this will be copied from the write data buffer in
user memory to the SpaceWire interface and appending the data CRC. Finally an EOP
marker will be added to complete the packet. The initiator user application will be
informed that the command has been sent by the RMAP core writing the transaction
ID and status to the memory location specified by the sent notify pointer in the
transaction details array element.

SpaceWire RMAP IP Core

105

4.4 RECEIVING A REPLY

When an RMAP reply is received the core searches the outstanding transaction array
for an entry with a transaction identifier that matches the transaction identifier of the
reply. Assuming there is a match the core then writes any data from a read or read-
modify-write reply to the user memory location specified by the reply data pointer for
the corresponding entry in the transaction details array. The RMAP core writes the
transaction identifier and status to the memory location specified by the reply
notification pointer in the transaction details array entry. When this has been done the
relevant entry in the outstanding transaction array is cleared freeing it for use by
another RMAP transaction. The core can generate transaction Ids automatically to
avoid the change that the user logic may use duplicate identifiers.

4.5 TRANSACTION DETAILS RECORD

The transaction details record is initialised in user memory by the host application
when it wishes to send an RMAP command. The format of the transaction details
record is illustrated in Table 1. The flags field is a bit mask which holds properties of
the transaction record such as notify on send, wait forever, etc.

 31 23 15 7 0

0 Unused Flags

1 Header Pointer

2 Write Data Pointer

3 Sent Notify Pointer

4 Reply Data Pointer

5 Reply Notify Pointer

6 Unused Data Length

7 Reply Timeout

Table 1: Transaction Details Record Memory Setup

4.6 HEADER INFORMATION RECORD

The header information record holds information on the RMAP command parameters
to be sent. An example header information record is stored in memory as defined by
an example header in Table 2. In the example there are four target SpaceWire
addresses and one block of reply SpaceWire addresses.

 31 23 15 7 0

0 Target Path Address 1 Target Path Address 2 Target Path Address 3 Target Path Address 4

1 Target Address Protocol ID Instruction Key

2 Reply Path Address 1 Reply Path Address 2 Reply Path Address 3 Reply Path Address 4

3 Initiator Address Transaction ID 1 Transaction TID 0 Extended Address

4 Address 3 Address 2 Address 1 Address 0

5 Data Length 2 Data Length 1 Data Length 0 Unused

Table 2: Header Information Record Setup

5 IP VALIDATION
Verification of the RMAP core is performed using an automated VHDL test-bench
which runs a series of test command scripts to check the function of the RMAP core.

SpaceWire Components

106

The command scripts run test-cases which detect correct and incorrect behaviour of
the configured RMAP core relative to the functional specification.

VHDL code coverage using the Modelsim simulator code coverage option in
Modelsim SE is used to check for coverage of the complete design by the test cases.
The purpose of the test cases is to show the function of the UUT is equivalent to the
specification defined in the functional specification document.

6 SYNTHESIS
The RMAP core has one system clock input which clocks all flip-flops in the design
except the receive clock domain of the SpaceWire link. The SpaceWire transmitter
can also be clocked from a separate clock input on the core dependent on the
SpaceWire link configuration settings.

A typical way to implement this RMAP core design is to run the system clock at the
byte rate of the system and use a separate transmit clock to transmit the bytes at the
required bit rate. For example a system which processes RMAP data at 20 Mbytes/s
requires a 100 MHz transmit clock to transmit the byte data at 200 Mbps DDR, taking
into account the SpaceWire data character length of 10 bits.

6.1 SYNTHESIS RESULTS

The results of synthesis runs on the Mentor Graphics Precision synthesiser are given
below.

Model
AX2000 Spartan3E 1600 ProASIC3E1500

FF Comb Modules Slices Tiles
Target Only with SpW 1425 2962 4464 (13.84%) 1134 (7.69%) 4576 (11.92%)

Initiator Only with SpW 2029 4434 6463 (20.04%) 2213 (15.00%) 7987 (20.80%)

Target and Initiator no SpW 2599 5634 8233 (26.20%) 2584 (17.52%) 10206 (26.58%)

Target and Initiator with SpW 2957 6249 9206 (29.06%) 3095 (20.97%) 11261 (29.33%)

Table 3: Area usage of RMAP core

6.2 SEU PROTECTION

It is expected that the fabric of the FPGA or ASIC technology will provide SEU
protection for synchronous elements in the design (flip-flops). Typically memory
blocks are not protected in silicon, therefore they should either be implemented as
flip-flops, or a drop in replacement for the single and dual clocked memory blocks
should be used in the final synthesised model. For example, memory blocks with error
detection and correction (EDAC) using error correcting codes (ECC) are provided
with the Actel Libero and designer tool chain. Critical memory blocks for SEU
protection in the design are the verify buffer, transaction table and DMA controller
FIFOs.

The SpaceWire interface transmit and receive FIFOs are also critical but as the RMAP
protocol is used, the packet data is protected by header and data CRCs. In this case
SEU protection may not be required.

SpaceWire RMAP IP Core

107

7 CONCLUSION
The RMAP IP core was developed in the frame of the SpaceNet activity. This resulted
in a SpaceWire interface VHDL core that includes the RMAP protocol extension to
SpaceWire, which will enable users to readily implement the RMAP protocols in
FPGAs or ASICs.

It is available from ESA for use on European space missions or projects and available
from STAR-Dundee for other applications. The core is designed to be a highly
configurable VHDL IP core which can be used as an RMAP target or initiator. The
core can be implemented in a number of technologies, including the radiation tolerant
Actel RTAX which is widely used in the Space industry.

8 REFERENCES
1. ECSS, “SpaceWire - Remote memory access protocol”, ECSS-E-ST-50-52C, Feb

2010, available from http://www.ecss.nl

2. S. Parkes, C. McClements, G. Kempf, S. Fishcher, P. Fabry, A. Leon, “SpaceWire
Router ASIC”, International SpaceWire Conference, Dundee, 2007.

3. T. Takashima, H. Hayakawa, H. Ogawa, Y. Kasaba, M. Koyama, K. Masukawa,
M. Kawasaki, S. Ishii, Y. Kuroda, BepiColombo MMO Project Data-Handling
Team, “Introduction of SpaceWire Applications for the MMO Spacecraft in
BepiColombo Mission”, International SpaceWire Conference, Dundee, 2007.

4. T. Yuasa, K. Nakazawa, K. Makishima, H. Odaka, M. Kokubun, T. Takashima, T.
Takahashi, M. Nomachi, I. Fujishiro, F. Hodoshima, “Development of a
SpW/RMAP-based Data Acquisition Framework for Scientific Detector
Applications, International SpaceWire Conference, Dundee, 2007.

5. ESA, “ESA – Aurora Programme – ExoMars”,
http://www.esa.int/SPECIALS/Aurora/SEM1NVZKQAD_0.html

6. Soutwest Research Institute, “MMS-SMART Home Page”,
http://mms.space.swri.edu/

7. ESA, “Micro-electronics Website “,
http://www.esa.int/TEC/Microelectronics/SEMLOU8L6VE_0.html”, ESA, 2010.

8. STAR-Dundee website: www.star-dundee.com

9. ECSS, “SpaceWire: Links, nodes, routers and networks”, ECSS-E-ST-50-12C,
July 2008.

SpaceWire Components

108

