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ABSTRACT 
The SpaceWire RMAP core is a VHDL IP core implementing the Remote Memory 
Access Protocol (RMAP). RMAP has been defined by the SpaceWire Working Group 
and standardised by the European Cooperation for Space Standarization (ECSS) as 
standard number ECCS-E-ST-50-52C. RMAP allows devices to read and write from 
memory spaces in a standard way, increasing device interoperability and reducing 
development time. The SpaceWire RMAP IP core provides a well tested, easy to use 
core for systems that need RMAP capability. 

1 INTRODUCTION 
The RMAP IP core was developed by the University of Dundee under contract from 
the European Space Agency (ESA). It is available from ESA for use on European 
space missions or projects and available from STAR-Dundee for other applications. 
The core is highly configurable and can be used as an RMAP target or initiator. The 
core can be implemented in a number of technologies, including various radiation 
tolerant FPGAs. 

2 BACKGROUND 
The Remote Memory Access Protocol (RMAP) standard is now available from the 
ECSS website as ECCS-E-ST-50-52C [1]. The RMAP standard was written by the 
University of Dundee with support from members of the SpaceWire Working Group. 
RMAP is a SpaceWire protocol that provides a standard mechanism for reading from, 
and writing, to memory in a remote SpaceWire node. The RMAP protocol has already 
been designed into the ESA SpW-10X router ASIC [2] and into missions like Bepi-
Colombo [3][4], MMS [5], and ExoMars rover [6]. 
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3 RMAP IP CORE OVERVIEW 

3.1 FUNCTION 

There are two main functions which can be selected by configuration at synthesis 
time. The first type is referred to as the “initiator” RMAP Interface which sends out 
RMAP commands and receives replies. The second type is the “target” RMAP 
Interface which receives RMAP commands, executes them and sends out any required 
replies. The RMAP core has a wrapper which connects to the ESA/Dundee 
SpaceWire-b core [7] [8] which handles the SpaceWire point-to-point link protocol. 
The RMAP core target and initiator functions are illustrated in Figure 1. The core is 
shown in three configurations; target only, initiator only or both. 

 

Figure 1: RMAP IP core Data Flow 

RMAP commands are initiated in the initiator user logic, encoded as RMAP packets 
in the “Initiator RMAP Interface”, sent over the SpaceWire link as an RMAP packet, 
decoded by the “Target RMAP Interface” and data or information is passed to the 
target user logic after authorisation of the command. The “Target RMAP Interface” 
formats an RMAP reply packet which is sent over the SpaceWire interface, decoded 
by the “Initiator RMAP Interface” and the reply data/status information is passed to 
the initiator user logic.  

3.2 ARCHITECTURE 

The architecture of the RMAP core is illustrated in Figure 2. The SpaceWire CODEC 
implements the SpaceWire serial point to point protocol, ECSS-E-ST-50-12C [9], and 
provides FIFO ports to the Protocol Input and Output blocks. The Protocol Input and 
Output blocks determine the destination of packets dependent on the packet header. 
The protocol handlers can bypass data from the RMAP core if the protocol identifier 
does not identify the packet as an RMAP packet. 
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Figure 2: RMAP IP core Architecture 

The Target RMAP Interface decodes RMAP command packets, reads or writes data 
from the host bus and returns RMAP reply packets. If the RMAP command is a 
verified write command the target writes the command data to the verify buffer before 
it is transferred to host memory. The Initiator RMAP Interface accepts commands into 
the initiator transaction table, encodes RMAP command packets, decodes reply 
packets and outputs status information. The target and initiator interact with the user 
memory space using DMA controllers. 

3.3 MEMORY INTERFACE 

The RMAP controller interface to memory is modelled on the AMBA AHB bus 
standard which provides a pipelined control/data bus transfer model. Data is 
transferred to and from the bus in bursts using internal burst FIFOs in the RMAP core. 
The bus can be configured for different bus size widths, byte order and bit swapping 
operations. 

3.4 CONFIGURATION 

The RMAP core is configured using VHDL generics. The configuration options of the 
core include the ability to implement target only logic, initiator only logic, or both 
target and initiator; configuration of the host bus width, the burst transfer depth and 
the byte/bit ordering of the RMAP packet data; watchdog timer on bus transfers; 
maximum number of outstanding initiator commands and therefore the initiator 
transaction table size; configuration of the internal FIFO sizes and the target verify 
buffer size. 

4 USING THE RMAP CORE 

4.1 TARGET 

The target command logic is responsible for decoding RMAP command packets and 
executing the specified command, e.g. write. RMAP command headers are checked 
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for validity and the set of RMAP command authorisation parameters are passed to the 
host for authorisation. The host can check the memory address, command and other 
parameters, and decide to authorise or discard the command. When the RMAP 
command is a write command, and authorisation has been given by the host, data is 
placed in user memory by the target DMA controller. 

The target reply logic is responsible for sending RMAP reply packets with the status 
of commands and additional data when a read command is performed. The status is 
dependent on the validity of the RMAP command packet and the authorisation 
response of the host. Reply data is read from the host user memory by the DMA 
controller and sent in the RMAP reply packet. 

4.2 INITIATOR 

The RMAP Initiator Handler uses several memory structures inside the RMAP core 
and inside initiator user memory. The structures are used to control the passing of 
commands from initiator user memory to the RMAP core and the passing of replies 
from the RMAP core to initiator user memory. The RMAP initiator data structures 
and data flow is depicted in Figure 3. 

 

Figure 3: Initiator Data Structures 
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In the initiator user memory there are four possible memory areas or buffers 
associated with each RMAP command: transaction details record, header information, 
write data, and reply data. 

The transaction details array holds the following information: a pointer to the 
command header in user memory, a pointer to any data to be sent with a write or read-
modify-write command, a pointer to the memory location for sent notification, a 
pointer to space for a reply to a read or read-modify-write command, a pointer to the 
memory location for reply notification, the length of data to be read or written and the 
reply time-out value. 

The header information buffer holds the RMAP command header information 
including the target SpaceWire address and the reply address. The write data buffer 
holds any data to be sent with a write or read-modify-write command. The reply data 
buffer is reserved space into which any data associated with a read or read-modify-
write command will be written. The length of the buffer is given by the data length 
field and will not be overwritten by the core, even when a read reply packet is 
received with more data than is in the buffer or the RMAP header record data length 
field is greater than the transaction record data length. 

4.3 SENDING A COMMAND 

To send an RMAP command the host sets up the header of the command in a header 
information buffer, any data to be sent with the command in a write data buffer and 
space for any reply in a reply data buffer. The user then creates a transaction record 
with pointers to the header information buffer, write data buffer and reply data buffer 
along with information about the amount of data in these buffers. It also provides 
pointers to memory locations (or registers) where sent and reply notifications are to be 
made. Finally it adds into the transaction record a reply time-out value which is set in 
micro seconds or can also be infinite. Once the transaction record is complete the 
initiator user application informs the RMAP core that is has an RMAP command to 
send and passes the RMAP core a pointer to the corresponding transaction record. 

If the transaction details record flags field indicates that the command is expecting a 
reply the command is not started (sent) until there is room for another transaction in 
its outstanding transaction array. The RMAP core will then send the command by 
copying the header information from user memory to the SpaceWire interface, adding 
any detail necessary (e.g. header CRC). The header information checked for errors 
before sending begins. Any errors which are detected in the header are recorded and 
output on the status interface and to the notify sent register, if used. 

If there is any write data to be sent this will be copied from the write data buffer in 
user memory to the SpaceWire interface and appending the data CRC. Finally an EOP 
marker will be added to complete the packet. The initiator user application will be 
informed that the command has been sent by the RMAP core writing the transaction 
ID and status to the memory location specified by the sent notify pointer in the 
transaction details array element. 
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4.4 RECEIVING A REPLY 

When an RMAP reply is received the core searches the outstanding transaction array 
for an entry with a transaction identifier that matches the transaction identifier of the 
reply. Assuming there is a match the core then writes any data from a read or read-
modify-write reply to the user memory location specified by the reply data pointer for 
the corresponding entry in the transaction details array. The RMAP core writes the 
transaction identifier and status to the memory location specified by the reply 
notification pointer in the transaction details array entry. When this has been done the 
relevant entry in the outstanding transaction array is cleared freeing it for use by 
another RMAP transaction. The core can generate transaction Ids automatically to 
avoid the change that the user logic may use duplicate identifiers. 

4.5 TRANSACTION DETAILS RECORD 

The transaction details record is initialised in user memory by the host application 
when it wishes to send an RMAP command. The format of the transaction details 
record is illustrated in Table 1. The flags field is a bit mask which holds properties of 
the transaction record such as notify on send, wait forever, etc. 

 31 23 15 7 0 

0 Unused Flags 

1 Header Pointer 

2 Write Data Pointer 

3 Sent Notify Pointer 

4 Reply Data Pointer 

5 Reply Notify Pointer 

6 Unused Data Length 

7 Reply Timeout 

Table 1: Transaction Details Record Memory Setup 

4.6 HEADER INFORMATION RECORD 

The header information record holds information on the RMAP command parameters 
to be sent. An example header information record is stored in memory as defined by 
an example header in Table 2. In the example there are four target SpaceWire 
addresses and one block of reply SpaceWire addresses. 

 31 23 15 7 0 

0 Target Path Address 1 Target Path Address 2 Target Path Address 3 Target Path Address 4 

1 Target Address Protocol ID Instruction Key 

2 Reply Path Address 1 Reply Path Address 2 Reply Path Address 3 Reply Path Address 4 

3 Initiator Address Transaction ID 1 Transaction TID 0 Extended Address 

4 Address 3 Address 2 Address 1 Address 0 

5 Data Length 2 Data Length 1 Data Length 0 Unused 

Table 2: Header Information Record Setup 

5 IP VALIDATION 
Verification of the RMAP core is performed using an automated VHDL test-bench 
which runs a series of test command scripts to check the function of the RMAP core. 
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The command scripts run test-cases which detect correct and incorrect behaviour of 
the configured RMAP core relative to the functional specification.  

VHDL code coverage using the Modelsim simulator code coverage option in 
Modelsim SE is used to check for coverage of the complete design by the test cases. 
The purpose of the test cases is to show the function of the UUT is equivalent to the 
specification defined in the functional specification document. 

6 SYNTHESIS 
The RMAP core has one system clock input which clocks all flip-flops in the design 
except the receive clock domain of the SpaceWire link. The SpaceWire transmitter 
can also be clocked from a separate clock input on the core dependent on the 
SpaceWire link configuration settings. 

A typical way to implement this RMAP core design is to run the system clock at the 
byte rate of the system and use a separate transmit clock to transmit the bytes at the 
required bit rate. For example a system which processes RMAP data at 20 Mbytes/s 
requires a 100 MHz transmit clock to transmit the byte data at 200 Mbps DDR, taking 
into account the SpaceWire data character length of 10 bits. 

6.1 SYNTHESIS RESULTS 

The results of synthesis runs on the Mentor Graphics Precision synthesiser are given 
below.  

Model 
AX2000 Spartan3E 1600 ProASIC3E1500 

FF Comb Modules Slices Tiles 
Target Only with SpW 1425 2962 4464 (13.84%) 1134 (7.69%) 4576 (11.92%) 

Initiator Only with SpW 2029 4434 6463 (20.04%) 2213 (15.00%) 7987 (20.80%) 

Target and Initiator no SpW 2599 5634 8233 (26.20%) 2584 (17.52%) 10206 (26.58%) 

Target and Initiator with SpW 2957 6249 9206 (29.06%) 3095 (20.97%) 11261 (29.33%) 

Table 3: Area usage of RMAP core 

6.2 SEU PROTECTION 

It is expected that the fabric of the FPGA or ASIC technology will provide SEU 
protection for synchronous elements in the design (flip-flops). Typically memory 
blocks are not protected in silicon, therefore they should either be implemented as 
flip-flops, or a drop in replacement for the single and dual clocked memory blocks 
should be used in the final synthesised model. For example, memory blocks with error 
detection and correction (EDAC) using error correcting codes (ECC) are provided 
with the Actel Libero and designer tool chain. Critical memory blocks for SEU 
protection in the design are the verify buffer, transaction table and DMA controller 
FIFOs. 

The SpaceWire interface transmit and receive FIFOs are also critical but as the RMAP 
protocol is used, the packet data is protected by header and data CRCs. In this case 
SEU protection may not be required. 
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7 CONCLUSION 
The RMAP IP core was developed in the frame of the SpaceNet activity. This resulted 
in a SpaceWire interface VHDL core that includes the RMAP protocol extension to 
SpaceWire, which will enable users to readily implement the RMAP protocols in 
FPGAs or ASICs. 

It is available from ESA for use on European space missions or projects and available 
from STAR-Dundee for other applications. The core is designed to be a highly 
configurable VHDL IP core which can be used as an RMAP target or initiator. The 
core can be implemented in a number of technologies, including the radiation tolerant 
Actel RTAX which is widely used in the Space industry. 
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