
ENHANCED DYNAMIC RECONFIGURABLE PROCESSING MODULE FOR

FUTURE SPACE APPLICATIONS

Session: SpaceWire Missions and Applications

Long Paper

Frank Bubenhagen, Björn Fiethe, Harald Michalik, Björn Osterloh

IDA TU Braunschweig, Hans-Sommer-Str.66, D-38106 Braunschweig, Germany
Paul Norridge, Wayne Sullivan, Chris Topping

Astrium Ltd, Gunnels Wood Road, Stevenage, Herts, UK SG1 2AS3
Jørgen Ilstad

European Space Agency, ESTEC, Keplerlaan 1, Noordwijk ZH, Netherlands

E-mail: bubenhagen@ida.ing.tu-bs.de, fiethe@ida.ing.tu-bs.de,
michalik@ida.ing.tu-bs.de, b.osterloh@tu-bs.de, paul.norridge@astrium.eads.net,

wayne.sullivan@astrium.eads.net, christopher.topping@astrium.eads.net,
jorgen.ilstad@esa.int

ABSTRACT

Future space missions require high-performance on-board processing capabilities and

a high degree of flexibility. State of the art radiation tolerant SRAM-based FPGAs

with large gate count provide an attractive solution for in-flight dynamic

reconfigurability. With these devices an advanced System-on-Chip (SoC) can be

implemented, but also the system reliability and qualification has to be guaranteed for

the harsh space environment. Therefore single modules have to be isolated from the

system physically and logically by qualified communication architecture, presented in

this paper: The SpaceWire based System-on-Chip Wire (SoCWire) communication

network. SoCWire provides a safe way to dynamically reconfigure parts of the FPGA

during flight. First verification results of a dynamic reconfigurable SoC based on

SoCWire are presented. Developed around SoCWire, the basic architecture for an

advanced Dynamic Reconfigurable Processing Module (DRPM) is proposed.

1 INTRODUCTION

For data processing of payload instruments on scientific spacecrafts specific

processing modules are commonly used. With increased data rates and the

requirement to control multiple sensors, the need for increased on-board processing

capabilities and a higher degree of instrument autonomy grow. While there are higher

requirements for a data processing on the one hand, on the other hand some basic

conditions remain still the same, i.e. limited downlink capacity, limited resources of

power and mass. Also the need for shorter development times and the demand by

scientists to adapt the instrument to mission specific requirements even after launch

require an advanced architecture. This leads to an in-flight adaptable hardware

architecture, which guarantees the once on-ground achieved qualification even after

partial exchange of hardware modules.

Enhanced Dynamic Reconfigurable Processing Module for Future Space Applications

475

mailto:bubenhagen@ida.ing.tu-bs.de
mailto:fiethe@ida.ing.tu-bs.de
mailto:michalik@ida.ing.tu-bs.de
mailto:paul.norridge@astrium.eads.net
mailto:christopher.topping@astrium.eads.net

Today the SRAM-based Virtex FPGAs from Xilinx provides high logic capacity and

thus offer a highly flexible platform to implement a reconfigurable System-on-Chip

(SoC) in a single device. These devices are available in radiation tolerant versions and

already have proven reliable flight heritage in many space missions, e.g. ESA Venus

Express (VEX) or NASA Dawn. However, the full flexibility of these devices to

perform complete or partial reconfiguration even during operation was only used

throughout the development phase on ground so far.

For an enhanced reconfigurable system the system qualification has to be guaranteed.

Effects during the reconfiguration process, space radiation induced errors and

interference of updated modules on the system have to be prevented. Therefore,

updated modules have to be isolated physically and logically by a qualified

communication architecture from the system.

This paper presents the key element for such an enhanced architecture, the SpaceWire

based System-on-Chip Wire (SoCWire) communication network. SoCWire provides a

safe way to dynamically reconfigure parts of the FPGA during flight. First verification

results of a dynamic reconfigurable SoC based on SoCWire are presented. At last the

basic architecture for an advanced processing module is proposed.

2 EFFECTS WITHIN A RECONFIGURABLE FPGA

The use of Xilinx SRAM-based FPGAs for a dynamic reconfigurable system requires

considering of two effects: (i) glitch effects, which occur during the dynamic partial

reconfiguration process while the FPGA is in operation and (ii) SEUs (Single-Event-

Upsets) within the space environment.

Partial reconfiguration denotes the modification of a limited, predefined portion of a

FPGA. A minimal reconfigurable system consists of a static area, which remains

unchanged and a Partial Reconfigurable Area (PRA), which is shared by two or more

Partial Reconfigurable Modules (PRMs) with different functionality. Xilinx FPGAs

have no explicit activation technique for a PRA. Therefore the configuration frames

become active as they were written. Configuration bits remaining unchanged will not

glitch during reconfiguration, but bits with a change of its logical state could

momentarily glitch when the frame write is processed. Experiments with

reconfiguration of a PRA from PRM1 to PRM2 and vice versa have shown

unpredictable behaviour for both, the duration of glitches and their influence on the

interface between the PRM and the static area.

A SEU is caused by charged particles losing energy by ionizing the medium which

they pass and leaving behind electron-hole pairs. Within a memory cell or flip-flop

this can cause a change of state and consequently corrupt the stored data. The

configuration for the programmable elements and routing resources of a Xilinx FPGA

is stored within static memory cells. Falsified memory cells can be corrected by

“scrubbing”, i.e. continuous reloading of configuration memory with the initial

design, but this does not prevent a propagation of an error through the system.

Techniques like Triple Modular Redundancy (TMR) can mitigate error propagation.

The drawbacks of TMR are higher resource utilization, a decrease of speed due to

longer paths and an increase of current because of more logic. Typically processing

units for scientific instruments are not mission critical. As result a trade-off between

limited resources and instrument availability is partly applied TMR. Anyhow, a SEU

SpaceWire Missions and Applications

476

in a non-TMR PRM interface logic could block the communication architecture and

stop the system.

Taking into account glitch effects and SEU induced errors during dynamic partial

reconfiguration the system qualification in a classical bus-based architecture within a

FPGA cannot be guaranteed. An enhanced architecture is required, which isolates

PRMs from the TMR protected host system to guarantee uninterruptable operation of

the system.

3 SYSTEM-ON-CHIP WIRE (SOCWIRE)

SoCWire has been developed to provide a Network-on-Chip (NoC) architecture

which is able to connect several PRMs with a host system and concurrently isolate the

PRMs logically and physically. SEU induced error, glitch effects or an intended

replacement of a module does not affect the operation of the remaining system.

3.1 SOCWIRE BASICS

Available spacecraft communication standards, e.g. MIL-STD-1553B, CAN bus,

SpaceWire were analyzed and compared for their suitability for a NoC. The outcome

of this analysis was that SpaceWire as an asynchronous, point-to-point, bi-directional,

serial link interface with a credit-based flow control, error detection, hot-plug ability

and automatic reconnection after a link disconnection [1] is currently the only

available switch topology and most suitable for a fault-tolerant and robust NoC

approach. As mentioned before SpaceWire is an asynchronous interface and

performance depends on skew and jitter. Reconfigurable processing modules are

implemented within a complete on-chip environment (NoC approach). Therefore, the

Spacewire interface has been modified to a synchronous, 10bit parallel data interface

(8bit data, control flag, parity bit), which results in significantly higher data rates

compared to the SpaceWire standard, e.g. 800Mbit/s at clock frequency of 100MHz.

Additionally, the data word width is scalable from 8bit to 128bit, which further

improves the throughput. Furthermore, the advantageous and reliable features from

this standard, such as flow-control, error detection and automatic link recovery in case

of an error, were preserved. Since SoCWire operates in a complete synchronous

environment, the timeouts during initialization and detection and recovery after a link

disconnection could be significantly decreased.

3.2 SOCWIRE NETWORK

To build up a network, a switch and a packet oriented protocol is needed. A SoCWire

network as shown in Figure 1 comprises: SoCWire coder/decoder (CODEC) as

network interface and a SoCWire switch to route the data packets through the network

[2]. The SoCWire switch is again based on the SpaceWire standard. A SoCWire

CODEC connects a node or the host system typically via a SoCWire switch to a

SoCWire network. The nodes are similar to SpaceWire nodes source and destination

of a link. The SoCWire switch is scalable from 8bit to 128bit data word width and

provides a configurable number of up to 32 ports. In contrast to a SpaceWire router

the configuration port was discarded and logical addressing is not supported to save

resources. A simple path addressing scheme is implemented instead, which is suitable

for small on-chip networks. The SoCWire switch comprises wormhole routing and the

simple time slot based round robin scheduling algorithm.

Enhanced Dynamic Reconfigurable Processing Module for Future Space Applications

477

Node Node Node

Host
System

SoCWire
Switch Node

Node SoCWire
CODEC

SoCWire
CODEC

SoCWire
CODEC

SoCWire
CODEC

SoCWire
CODECSoCWire

Switch

SoCWire
Switch

SoCWire
CODEC

Figure 1 SoCWire architecture network example

4 SOCWIRE: ARCHITECTURE VERIFICATION

The objective of SoCWire is to provide a robust communication architecture for

dynamic partial reconfiguration systems. Since the major requirement for SoCWire is

the isolation of a PRM, this feature has to be validated in an architecture verification.

4.1 FUNCTIONAL VERIFICATION

SoCWire has to be validated on the advantageous features of SpaceWire providing

link initialization, error detection/recovery and unidirectional and bidirectional data

rates. The main difference between SpaceWire and SoCWire is that SoCWire

provides a parallel data interface and operates in a completely synchronous

environment. The advantage of this point is that SoCWire is more deterministic,

because any change of state is related to clock cycles. SoCWire is a fully pipelined

implementation and two clock cycles are required to perform an action. One

advantage of the synchronous environment is the much faster initialization of a link in

comparison to SpaceWire. A disconnection is detected after three clock cycles, the

exchange of silence lasts six clock cycles and the timeout twelve clock cycles.

Overall, 26 clock cycles minimum are necessary for building up a link on the

condition that both SoCWire CODECs receive the reset at the same time. Tests with

adding delays of different length to one of these reset signals always resulted in a

proper initialization of the link. Both the unidirectional and the bidirectional data

transfer have been tested with a Pseudo Random Bit Sequence (PRBS) generator

stimulus to validate data integrity. Furthermore, data packets of different length (1 to

1048576 bytes) have been tested. In all performed tests no transmission errors have

been detected and the data rates from the simulations could be verified. Furthermore,

SoCWire has been tested and validated on the error detection/recovery features of the

SpaceWire standard, e.g. parity errors, escape errors, character sequence errors, credit

errors and disconnect errors. Figure 2 depicts the fault injection mechanism for this

verification. All errors have been successfully injected and error detection and

recovery could be validated to be SpaceWire conform. The error recovery time of

SoCWire is at minimum the initialization time for a link plus synchronization

overhead.

SpaceWire Missions and Applications

478

Figure 2 SoCWire verification architecture

4.2 FAULT TOLERANCE

One mandatory requirement in a space environment is fault tolerance. Single-Event-

Upsets on a SoCWire node within the FPGA can be modelled as stuck bit either at

logical „0‟ or ‟1‟. This error can occur during a link initialization or during run-time.

With the programmable fault injection mechanism a certain bit in the link has been

fixed to one of the logical states. In all performed test a stuck bit either in the link

initialization phase or during run-time does not affect the functionality of the host

system and an error is reported. Appropriate error recovery schemes can be applied by

the user, e.g. scrubbing.

During the reconfiguration process of a PRM glitch effects occur and affect nearly

every part of the interface logic for a given time in the range of microseconds. These

effects impact the link initialization phase when an empty PRA is configured for the

first time or during an established link connection when a PRM is replaced by another

one. To verify the impact of glitch effects on a SoCWire CODEC interface, a random

pattern generator with random delay in the range of nanoseconds to several

microseconds was implemented in hardware. This generator emulates the behaviour

on the interface signals which could occur with different PRM configuration patterns.

Even though this generator does not simulate the real FPGA technology and effects

during dynamic partial reconfiguration, during the test the SoCWire host system was

not disturbed in its operation.

4.3 PARTIAL DYNAMIC RECONFIGURATION

A dynamic partial reconfigurable SoCWire architecture with host system including

SoCWire CODEC and a PRM with SoCWire CODEC as well as an additional module

for control and data generation e.g. PRBS has been implemented. Moreover, a static

PRM with all outputs ones and a PRM with pure counter functionality have been

created. The following tests have been performed with the JTAG interface to

reconfigure the system dynamically: (i) SoCWire counter module to SoCWire PRBS

module, and (ii) Static module to SoCWire PRBS module. Since dynamic partial

reconfiguration has the same behaviour as scrubbing on all elements within a module

which does not change, test (i) was performed to prevent the SoCWire CODEC from

not being affected by the dynamic reconfiguration process.

Two behaviours have been observed during the tests, which are shown in Figure 3.

The figure represents the “active signals” or link connected from the SoCWire

CODEC core on host system side and on PRM side. (I) shows a smooth dynamic

reconfiguration of the PRM. Glitches occurred on all PRM outputs during the

reconfiguration process. (II) shows the glitch effects as well as a repeatedly

establishing link connection stabilising at the end. There is not much known about the

Enhanced Dynamic Reconfigurable Processing Module for Future Space Applications

479

dynamic partial reconfiguration process in Xilinx FPGAs to explain this effect.

Configuration frames become active when they are written; it is most likely that parts

of the design operate before the reconfiguration process is finished.

Host SoCWire
Link connection

PRM SoCWire
Link connection

Host SoCWire
Link connection

PRM SoCWire
Link connection

glitch

reconfiguration

glitch

reconfiguration

oscillating

(I)

(II)

Link
connected

Link
connected

Figure 3 SoCWire "active signals" during dynamic partial reconfiguration

Since the configuration memory within a Xilinx FPGA is written from the left to right

side [3], also the influence of bus macro placement, which establishes communication

between static area and PRAs, has been analysed. During the initial tests the bus

macros were placed on right side of the PRM as depicted in Figure 4 on the left hand

side. Tests with placement of the bus macros on the right hand side of the PRM

showed a smooth stable link connection avoiding the oscillation effect. Even with

oscillating behaviour during the dynamic partial reconfiguration process, the PRMs

were isolated from the host system and do not have any effect on its operation.

PRM

Reconfiguration

Frame

Bus macro

Static

PRM

Static

Figure 4 PRM bus macro placement

5 DRPM ARCHITECTURE

Around the SoCWire communication architecture we are currently developing under

ESA contract a flexible processing system with full support for in-flight dynamic

partial reconfiguration of application firmware, the Dynamic Reconfigurable

Processing Module (DRPM). The basic DRPM architecture is shown in Figure 5 [4].

The major subunits are (i) dynamically reconfigurable FPGAs (within each DFPGA),

(ii) SpaceWire router for hosting and managing the networking between various

subunits, (iii) system controller for overall configuration control of the module and

execution of application software, (iv) interfaces to spacecraft using standards like

SpaceWire, MIL-1553B and CAN bus, and finally (v) interfaces to the instrument

electronics, e.g. sensors or cameras.

The DRPM comprise a highly modular architecture. Consequently, the SpaceWire

router can provide expandability not only to additional DFPGAs, but also to

SpaceWire Missions and Applications

480

additional DRPMs. With this concept it is possible to simply extend the processing

capacity by attaching additional modules or adding modules for hardware redundancy.

Then one system controller would be the master and the other ones slaves.

Figure 5 DRPM architecture

Since the system controllers‟ main task is controlling and supervising the overall

DRPM, a fault-tolerant processor implementation should be used for this subunit. For

instance, the LEON-based SpaceWire RTC ASIC (AT7913E) already incorporates the

required interfaces like RMAP compatible SpaceWire and CAN bus controller. Of

major importance is a safe and flexible implementation of the high capacity non-

volatile memory for secure storage of all partial configuration bit files needed for the

DFPGAs. Each reconfigurable DFPGA consists of configuration controller containing

the static area with common interfaces and one or several reconfigurable FPGA(s),

mainly comprising the dynamic area. This basic architecture is depicted in Figure 6.

Multi Port
Memory Controller

Configuration
Controller

Instrument
Local Data

Memory

Configuation

Controller

(Actel FPGA)

SpW Router

Analog
I/F

(ADC,
DAC)

SoCW
Switch

SoCW
Codec

PRM
1

SoCW
Codec

PRM
2

SoCW
Codec

PRM
3

C
onfiguration
Interface

Dynamic Area

Reconfigurable FPGA

Xilinx Virtex-4 #1

Reconfigurable FPGA #N+1

LDR
Instrument

Processor

Reconfigurable FPGA #N-1

Working
Memory

SoCW Network for
Science Data

SoCW Network for
Configuration Data

HDR
Instrument

Figure 6 DFPGA architecture

Enhanced Dynamic Reconfigurable Processing Module for Future Space Applications

481

The configuration controller is responsible for configuration, verification and

supervision of PRMs within the dynamic area. It is implemented within a TMR by

design one-time programmable RTAX FPGA. Two independent SoCWire

communication networks form the backbone for controller functionality. One network

is responsible for secure dynamic configuration and scrubbing of reconfigurable

FPGA(s). The other one connects the dynamic area with the processor of the

controller, instrument interfaces and a large local data memory. To achieve high

reliability this memory is implemented in the static area with advanced symbol error

correction capabilities for secure temporal storage of local configuration files. The

independency of the two SoCWire networks provides increased reliability. The

processor is required to provide data-flow control functions for the allocation and

access of various interfaces to the commonly used data memory and configuration

management of the attached reconfigurable FPGA(s). The dynamic area is based on

Xilinx Virtex-4 FPGAs which are available on reliable packaging and certified for

radiation performance and reliability. The SoCWire switch within the small static area

of the reconfigurable FPGA(s) connects to the different PRMs and optionally directly

to external high-speed interfaces, e.g. Channel Link. To achieve a modular

architecture, the switch provides also direct data exchange between different

reconfigurable FPGAs or even DFPGA subunits.

6 CONCLUSION

The DRPM provides an architecture being suitable to satisfy the demand of future

space missions for high performance on-board processing with the requirement to

update processing modules in-flight. One issue within such an enhanced architecture

is the guarantee of system qualification, even after an update of a processing module.

SpaceWire is widely used as a proved reliable interface standard on-board spacecrafts.

Modifying this standard to the fault-tolerant, high-speed on-chip communication

architecture SoCWire for FPGAs offers the possibility to built-up systems where

processing modules can be exchanged without affecting the operation of the host

system. SoCWire is published as an open source project provided by IDA. Source

code, documentation and testbenches can be accessed at www.socwire.org.

7 REFERENCES

1. ESA ESTEC, “Space Engineering: SpaceWire-Links, nodes, routers, and

networks”, ECSS-E-50-12A, Noordwijk Netherlands, January 2003.

2. B. Osterloh, “SoCWire User Manual“, www.socwire.org, 2009

3. Xilinx Inc., “Virtex-4 FPGA Configuration User Guide. UG071(v1.11)”,

www.xilinx.com, USA, 2009.

4. ESA, “FPGA bases generic module and dynamic reconfigurator”, TEC-

EDP/2008.30/JI, Issue: 1 Rev.1, Noordwijk, Netherlands, 2008

SpaceWire Missions and Applications

482

http://www.socwire.org/

