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ABSTRACT 

Future space missions require high-performance on-board processing capabilities and 

a high degree of flexibility. State of the art radiation tolerant SRAM-based FPGAs 

with large gate count provide an attractive solution for in-flight dynamic 

reconfigurability. With these devices an advanced System-on-Chip (SoC) can be 

implemented, but also the system reliability and qualification has to be guaranteed for 

the harsh space environment. Therefore single modules have to be isolated from the 

system physically and logically by qualified communication architecture, presented in 

this paper: The SpaceWire based System-on-Chip Wire (SoCWire) communication 

network. SoCWire provides a safe way to dynamically reconfigure parts of the FPGA 

during flight. First verification results of a dynamic reconfigurable SoC based on 

SoCWire are presented. Developed around SoCWire, the basic architecture for an 

advanced Dynamic Reconfigurable Processing Module (DRPM) is proposed. 

1 INTRODUCTION 

For data processing of payload instruments on scientific spacecrafts specific 

processing modules are commonly used. With increased data rates and the 

requirement to control multiple sensors, the need for increased on-board processing 

capabilities and a higher degree of instrument autonomy grow. While there are higher 

requirements for a data processing on the one hand, on the other hand some basic 

conditions remain still the same, i.e. limited downlink capacity, limited resources of 

power and mass. Also the need for shorter development times and the demand by 

scientists to adapt the instrument to mission specific requirements even after launch 

require an advanced architecture. This leads to an in-flight adaptable hardware 

architecture, which guarantees the once on-ground achieved qualification even after 

partial exchange of hardware modules.  
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Today the SRAM-based Virtex FPGAs from Xilinx provides high logic capacity and 

thus offer a highly flexible platform to implement a reconfigurable System-on-Chip 

(SoC) in a single device. These devices are available in radiation tolerant versions and 

already have proven reliable flight heritage in many space missions, e.g. ESA Venus 

Express (VEX) or NASA Dawn. However, the full flexibility of these devices to 

perform complete or partial reconfiguration even during operation was only used 

throughout the development phase on ground so far. 

For an enhanced reconfigurable system the system qualification has to be guaranteed. 

Effects during the reconfiguration process, space radiation induced errors and 

interference of updated modules on the system have to be prevented. Therefore, 

updated modules have to be isolated physically and logically by a qualified 

communication architecture from the system. 

This paper presents the key element for such an enhanced architecture, the SpaceWire 

based System-on-Chip Wire (SoCWire) communication network. SoCWire provides a 

safe way to dynamically reconfigure parts of the FPGA during flight. First verification 

results of a dynamic reconfigurable SoC based on SoCWire are presented. At last the 

basic architecture for an advanced processing module is proposed. 

2 EFFECTS WITHIN A RECONFIGURABLE FPGA 

The use of Xilinx SRAM-based FPGAs for a dynamic reconfigurable system requires 

considering of two effects: (i) glitch effects, which occur during the dynamic partial 

reconfiguration process while the FPGA is in operation and (ii) SEUs (Single-Event-

Upsets) within the space environment. 

Partial reconfiguration denotes the modification of a limited, predefined portion of a 

FPGA. A minimal reconfigurable system consists of a static area, which remains 

unchanged and a Partial Reconfigurable Area (PRA), which is shared by  two or more 

Partial Reconfigurable Modules (PRMs) with different functionality. Xilinx FPGAs 

have no explicit activation technique for a PRA. Therefore the configuration frames 

become active as they were written. Configuration bits remaining unchanged will not 

glitch during reconfiguration, but bits with a change of its logical state could 

momentarily glitch when the frame write is processed. Experiments with 

reconfiguration of a PRA from PRM1 to PRM2 and vice versa have shown 

unpredictable behaviour for both, the duration of glitches and their influence on the 

interface between the PRM and the static area. 

A SEU is caused by charged particles losing energy by ionizing the medium which 

they pass and leaving behind electron-hole pairs. Within a memory cell or flip-flop 

this can cause a change of state and consequently corrupt the stored data. The 

configuration for the programmable elements and routing resources of a Xilinx FPGA 

is stored within static memory cells. Falsified memory cells can be corrected by 

“scrubbing”, i.e. continuous reloading of configuration memory with the initial 

design, but this does not prevent a propagation of an error through the system. 

Techniques like Triple Modular Redundancy (TMR) can mitigate error propagation. 

The drawbacks of TMR are higher resource utilization, a decrease of speed due to 

longer paths and an increase of current because of more logic. Typically processing 

units for scientific instruments are not mission critical. As result a trade-off between 

limited resources and instrument availability is partly applied TMR. Anyhow, a SEU 
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in a non-TMR PRM interface logic could block the communication architecture and 

stop the system. 

Taking into account glitch effects and SEU induced errors during dynamic partial 

reconfiguration the system qualification in a classical bus-based architecture within a 

FPGA cannot be guaranteed. An enhanced architecture is required, which isolates 

PRMs from the TMR protected host system to guarantee uninterruptable operation of 

the system. 

3 SYSTEM-ON-CHIP WIRE (SOCWIRE) 

SoCWire has been developed to provide a Network-on-Chip (NoC) architecture 

which is able to connect several PRMs with a host system and concurrently isolate the 

PRMs logically and physically. SEU induced error, glitch effects or an intended 

replacement of a module does not affect the operation of the remaining system. 

3.1 SOCWIRE BASICS 

Available spacecraft communication standards, e.g. MIL-STD-1553B, CAN bus, 

SpaceWire were analyzed and compared for their suitability for a NoC. The outcome 

of this analysis was that SpaceWire as an asynchronous, point-to-point, bi-directional, 

serial link interface with a credit-based flow control, error detection, hot-plug ability 

and automatic reconnection after a link disconnection [1] is currently the only 

available switch topology and most suitable for a fault-tolerant and robust NoC 

approach. As mentioned before SpaceWire is an asynchronous interface and 

performance depends on skew and jitter. Reconfigurable processing modules are 

implemented within a complete on-chip environment (NoC approach). Therefore, the 

Spacewire interface has been modified to a synchronous, 10bit parallel data interface 

(8bit data, control flag, parity bit), which results in significantly higher data rates 

compared to the SpaceWire standard, e.g. 800Mbit/s at clock frequency of 100MHz. 

Additionally, the data word width is scalable from 8bit to 128bit, which further 

improves the throughput. Furthermore, the advantageous and reliable features from 

this standard, such as flow-control, error detection and automatic link recovery in case 

of an error, were preserved. Since SoCWire operates in a complete synchronous 

environment, the timeouts during initialization and detection and recovery after a link 

disconnection could be significantly decreased. 

3.2 SOCWIRE NETWORK 

To build up a network, a switch and a packet oriented protocol is needed. A SoCWire 

network as shown in Figure 1 comprises: SoCWire coder/decoder (CODEC) as 

network interface and a SoCWire switch to route the data packets through the network 

[2]. The SoCWire switch is again based on the SpaceWire standard. A SoCWire 

CODEC connects a node or the host system typically via a SoCWire switch to a 

SoCWire network. The nodes are similar to SpaceWire nodes source and destination 

of a link. The SoCWire switch is scalable from 8bit to 128bit data word width and 

provides a configurable number of up to 32 ports. In contrast to a SpaceWire router 

the configuration port was discarded and logical addressing is not supported to save 

resources. A simple path addressing scheme is implemented instead, which is suitable 

for small on-chip networks. The SoCWire switch comprises wormhole routing and the 

simple time slot based round robin scheduling algorithm.  
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Figure 1 SoCWire architecture network example 

4 SOCWIRE: ARCHITECTURE VERIFICATION 

The objective of SoCWire is to provide a robust communication architecture for 

dynamic partial reconfiguration systems. Since the major requirement for SoCWire is 

the isolation of a PRM, this feature has to be validated in an architecture verification.  

4.1 FUNCTIONAL VERIFICATION 

SoCWire has to be validated on the advantageous features of SpaceWire providing 

link initialization, error detection/recovery and unidirectional and bidirectional data 

rates. The main difference between SpaceWire and SoCWire is that SoCWire 

provides a parallel data interface and operates in a completely synchronous 

environment. The advantage of this point is that SoCWire is more deterministic, 

because any change of state is related to clock cycles. SoCWire is a fully pipelined 

implementation and two clock cycles are required to perform an action. One 

advantage of the synchronous environment is the much faster initialization of a link in 

comparison to SpaceWire. A disconnection is detected after three clock cycles, the 

exchange of silence lasts six clock cycles and the timeout twelve clock cycles. 

Overall, 26 clock cycles minimum are necessary for building up a link on the 

condition that both SoCWire CODECs receive the reset at the same time. Tests with 

adding delays of different length to one of these reset signals always resulted in a 

proper initialization of the link. Both the unidirectional and the bidirectional data 

transfer have been tested with a Pseudo Random Bit Sequence (PRBS) generator 

stimulus to validate data integrity. Furthermore, data packets of different length (1 to 

1048576 bytes) have been tested. In all performed tests no transmission errors have 

been detected and the data rates from the simulations could be verified. Furthermore, 

SoCWire has been tested and validated on the error detection/recovery features of the 

SpaceWire standard, e.g. parity errors, escape errors, character sequence errors, credit 

errors and disconnect errors. Figure 2 depicts the fault injection mechanism for this 

verification. All errors have been successfully injected and error detection and 

recovery could be validated to be SpaceWire conform. The error recovery time of 

SoCWire is at minimum the initialization time for a link plus synchronization 

overhead. 
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Figure 2 SoCWire verification architecture 

4.2 FAULT TOLERANCE 

One mandatory requirement in a space environment is fault tolerance. Single-Event-

Upsets on a SoCWire node within the FPGA can be modelled as stuck bit either at 

logical „0‟ or ‟1‟. This error can occur during a link initialization or during run-time. 

With the programmable fault injection mechanism a certain bit in the link has been 

fixed to one of the logical states. In all performed test a stuck bit either in the link 

initialization phase or during run-time does not affect the functionality of the host 

system and an error is reported. Appropriate error recovery schemes can be applied by 

the user, e.g. scrubbing. 

During the reconfiguration process of a PRM glitch effects occur and affect nearly 

every part of the interface logic for a given time in the range of microseconds. These 

effects impact the link initialization phase when an empty PRA is configured for the 

first time or during an established link connection when a PRM is replaced by another 

one. To verify the impact of glitch effects on a SoCWire CODEC interface, a random 

pattern generator with random delay in the range of nanoseconds to several 

microseconds was implemented in hardware. This generator emulates the behaviour 

on the interface signals which could occur with different PRM configuration patterns. 

Even though this generator does not simulate the real FPGA technology and effects 

during dynamic partial reconfiguration, during the test the SoCWire host system was 

not disturbed in its operation. 

4.3 PARTIAL DYNAMIC RECONFIGURATION 

A dynamic partial reconfigurable SoCWire architecture with host system including 

SoCWire CODEC and a PRM with SoCWire CODEC as well as an additional module 

for control and data generation e.g. PRBS has been implemented. Moreover, a static 

PRM with all outputs ones and a PRM with pure counter functionality have been 

created. The following tests have been performed with the JTAG interface to 

reconfigure the system dynamically: (i) SoCWire counter module to SoCWire PRBS 

module, and (ii) Static module to SoCWire PRBS module. Since dynamic partial 

reconfiguration has the same behaviour as scrubbing on all elements within a module 

which does not change, test (i) was performed to prevent the SoCWire CODEC from 

not being affected by the dynamic reconfiguration process. 

Two behaviours have been observed during the tests, which are shown in Figure 3. 

The figure represents the “active signals” or link connected from the SoCWire 

CODEC core on host system side and on PRM side. (I) shows a smooth dynamic 

reconfiguration of the PRM. Glitches occurred on all PRM outputs during the 

reconfiguration process. (II) shows the glitch effects as well as a repeatedly 

establishing link connection stabilising at the end. There is not much known about the 
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dynamic partial reconfiguration process in Xilinx FPGAs to explain this effect. 

Configuration frames become active when they are written; it is most likely that parts 

of the design operate before the reconfiguration process is finished.  
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Figure 3 SoCWire "active signals" during dynamic partial reconfiguration 

Since the configuration memory within a Xilinx FPGA is written from the left to right 

side [3], also the influence of bus macro placement, which establishes communication 

between static area and PRAs, has been analysed. During the initial tests the bus 

macros were placed on right side of the PRM as depicted in Figure 4 on the left hand 

side. Tests with placement of the bus macros on the right hand side of the PRM 

showed a smooth stable link connection avoiding the oscillation effect. Even with 

oscillating behaviour during the dynamic partial reconfiguration process, the PRMs 

were isolated from the host system and do not have any effect on its operation. 
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Reconfiguration

Frame

Bus macro

Static
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Figure 4 PRM bus macro placement 

5 DRPM ARCHITECTURE 

Around the SoCWire communication architecture we are currently developing under 

ESA contract a flexible processing system with full support for in-flight dynamic 

partial reconfiguration of application firmware, the Dynamic Reconfigurable 

Processing Module (DRPM). The basic DRPM architecture is shown in Figure 5 [4]. 

The major subunits are (i) dynamically reconfigurable FPGAs (within each DFPGA), 

(ii) SpaceWire router for hosting and managing the networking between various 

subunits, (iii) system controller for overall configuration control of the module and 

execution of application software, (iv) interfaces to spacecraft using standards like 

SpaceWire, MIL-1553B and CAN bus, and finally (v) interfaces to the instrument 

electronics, e.g. sensors or cameras. 

The DRPM comprise a highly modular architecture. Consequently, the SpaceWire 

router can provide expandability not only to additional DFPGAs, but also to 
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additional DRPMs. With this concept it is possible to simply extend the processing 

capacity by attaching additional modules or adding modules for hardware redundancy. 

Then one system controller would be the master and the other ones slaves. 

 

Figure 5 DRPM architecture 

Since the system controllers‟ main task is controlling and supervising the overall 

DRPM, a fault-tolerant processor implementation should be used for this subunit. For 

instance, the LEON-based SpaceWire RTC ASIC (AT7913E) already incorporates the 

required interfaces like RMAP compatible SpaceWire and CAN bus controller. Of 

major importance is a safe and flexible implementation of the high capacity non-

volatile memory for secure storage of all partial configuration bit files needed for the 

DFPGAs. Each reconfigurable DFPGA consists of configuration controller containing 

the static area with common interfaces and one or several reconfigurable FPGA(s), 

mainly comprising the dynamic area. This basic architecture is depicted in Figure 6.  

Multi Port
Memory Controller

Configuration
Controller

Instrument
Local Data

Memory

Configuation

Controller

(Actel FPGA)

SpW Router

Analog
I/F 

(ADC,
DAC)

SoCW
Switch

SoCW
Codec

PRM
1

SoCW
Codec

PRM
2

SoCW
Codec

PRM
3

C
onfiguration
Interface

Dynamic Area

Reconfigurable FPGA 

Xilinx Virtex-4 #1

Reconfigurable FPGA #N+1

LDR
Instrument

Processor

Reconfigurable FPGA #N-1

Working 
Memory

SoCW Network for 
Science Data

SoCW Network for
Configuration Data

HDR
Instrument

 

Figure 6 DFPGA architecture 
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The configuration controller is responsible for configuration, verification and 

supervision of PRMs within the dynamic area. It is implemented within a TMR by 

design one-time programmable RTAX FPGA. Two independent SoCWire 

communication networks form the backbone for controller functionality. One network 

is responsible for secure dynamic configuration and scrubbing of reconfigurable 

FPGA(s). The other one connects the dynamic area with the processor of the 

controller, instrument interfaces and a large local data memory. To achieve high 

reliability this memory is implemented in the static area with advanced symbol error 

correction capabilities for secure temporal storage of local configuration files. The 

independency of the two SoCWire networks provides increased reliability. The 

processor is required to provide data-flow control functions for the allocation and 

access of various interfaces to the commonly used data memory and configuration 

management of the attached reconfigurable FPGA(s). The dynamic area is based on 

Xilinx Virtex-4 FPGAs which are available on reliable packaging and certified for 

radiation performance and reliability. The SoCWire switch within the small static area 

of the reconfigurable FPGA(s) connects to the different PRMs and optionally directly 

to external high-speed interfaces, e.g. Channel Link. To achieve a modular 

architecture, the switch provides also direct data exchange between different 

reconfigurable FPGAs or even DFPGA subunits. 

6 CONCLUSION 

The DRPM provides an architecture being suitable to satisfy the demand of future 

space missions for high performance on-board processing with the requirement to 

update processing modules in-flight. One issue within such an enhanced architecture 

is the guarantee of system qualification, even after an update of a processing module. 

SpaceWire is widely used as a proved reliable interface standard on-board spacecrafts. 

Modifying this standard to the fault-tolerant, high-speed on-chip communication 

architecture SoCWire for FPGAs offers the possibility to built-up systems where 

processing modules can be exchanged without affecting the operation of the host 

system. SoCWire is published as an open source project provided by IDA. Source 

code, documentation and testbenches can be accessed at www.socwire.org. 
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