
USING SPACEWIRE IN A SECURELY PARTITIONED COMPUTING
ARCHITECTURE

Session: SpaceWire Missions and Applications

Long Paper

Peter Mendham

SciSys UK Ltd, Clothier Road, Bristol, BS4 5SS, UK
Knut Eckstein, James Windsor

ESA/ESTEC, 2200 AG Noordwijk ZH, The Netherlands
E-mail: peter.mendham@scisys.co.uk, knut.eckstein@esa.int, james.windsor@esa.int

ABSTRACT
SciSys is leading an ongoing ESA study into the development of an embedded
systems software architecture which provides the capability to partition multiple
applications in a safe and secure manner. This architecture targets future dual-use
spacecraft shared by multiple payload developers and operators. We consider the
requirements placed on a SpaceWire onboard communications system by such an
architecture in terms of spatial partitioning of data and temporal partitioning of shared
resources such as communications links. The resulting discussion elicits concrete
requirements on both the hardware and software of the onboard SpaceWire elements.

1 INTRODUCTION
SciSys is leading an ongoing ESA study into the development of an embedded
systems software architecture which provides the capability to partition multiple
applications in a safe and secure manner. As a baseline reference architecture, the
study considers a dual use spacecraft with a single onboard computer handling both
platform and payload operations with the latter performed by separate partitioned
applications.

Such a securely partitioning architecture places a number of requirements on an
onboard communications system in terms confidentiality and integrity of data
transmitted on shared resources such as communications links. As an increasingly
popular communications technology, the applicability of SpaceWire to such a future
system architecture is crucial, and the ability of a SpaceWire communications
architecture to meet the requirements is the focus of this paper.

Section 2 introduces the concept of Time and Space Partitioning (TSP) and its
applications to onboard processing. Whilst TSP has typically been applied for reasons
of safety and ease of development and integration, we discuss the implications of
applying TSP in an environment where security needs must also be met. The
following three sections elicit concrete requirements on both SpaceWire hardware and
software. In Section 3, a hardware-focussed analysis lists mechanisms by which

Using SpaceWire In a Securely Partitioned Computing Architecture

465

current SpaceWire hardware interfaces may be utilised by a securely partitioned
computing platform, and presents key concepts for future consideration. Link- and
network-level partitioning in routers is considered in section 4, for example time-
scheduling, such as in SpaceWire-(R)T. In Section 5, a complementary analysis
discusses the role of software services, such as SOIS, in a securely partitioned system.
The paper concludes by summarising the central role that SpaceWire can play in a
securely partitioned spacecraft architecture.

2 TIME AND SPACE PARTITIONING FOR SECURITY AND SAFETY
The concept of TSP in software systems has been established for some time, and has
seen successful application in a wide variety of domains, including avionics,
automotive systems, enterprise servers and handheld mobile devices.

2.1 TIME AND SPACE PARTITIONING

TSP is a technique which permits the sharing of a computing platform between
multiple independent applications. Spatial partitioning indicates the division of shared
resources, such as memory, which may be utilised by multiple applications
simultaneously. Spatial regions such as memory address ranges can be limited to
exclusive access by one application, or shared access by multiple applications can be
granted. Temporal partitioning indicates the division of shared resources, such as a
simple processor, which cannot be utilised by multiple applications simultaneously.
Such resources must be wholly ‘owned’ by a single application at any point in time,
and are shared by multiplexing the access to the resource by applications in time.

Through suitable enforcement of temporal and spatial partition boundaries, TSP
provides an integrated environment in which applications cannot interfere with each
other. This can be used for many purposes, including the isolation of sensitive
applications, and permitting applications to be developed, validated and potentially
certified separately. A partitioned system is shown in Figure 1.

Figure 1: TSP Architecture

TSP is typically implemented using tight coordination between operating system (OS)
and hardware features. A memory management unit (MMU) gives the OS an efficient
mechanism to enforce spatial partitioning of mapped memory. A MMU may be used
to protect memory regions from undesired read or write operations by applications
which should not have access. Temporal partitioning is typically enforced through a

Separation Microkernel

Hardware

Partition

Partition OS

Application

Partition

Partition OS

Application

Partition

Partition OS

Application

SpaceWire Missions and Applications

466

periodic timer interrupt which cannot be blocked or intercepted by applications. The
interrupt is handled by the OS, which is responsible for saving the state of temporally
partitioned resources and preparing them for access by another application.

The Integrated Modular Avionics (IMA) architecture [1], deployed on recently
developed commercial aircraft such as B787 and A380, heavily utilizes TSP. In more
traditional avionics architectures each element of the system is provided on a number
of dedicated hardware units. In contrast, IMA permits accommodation of the
computing functions of several system elements in common computing hardware and
the use of shared communication networks. Typically this reduces the weight of the
system and costs in development, system supply and maintenance.

The space industry has a number of similar requirements to both the aviation and
automotive industries, which has lead to the investigation of the potential for
“spinning-in” IMA technology, using TSP, into the space domain with studies such as
the ESA IMA for Space activity [2].

2.2 PARTITIONING FOR SECURITY

As part of the ongoing Securely Partitioning Spacecraft Computing Resources activity
(ESA Contract No. 22186/09/NL/LvH) led by SciSys, a study was conducted into the
future security needs for primes and agencies. The study identified a wide range of
scenarios in which security needs may affect onboard computing resources, such as
multi-agency spacecraft, dual-use missions and assisting spacecraft manufacturers in
meeting export regulations. In the reference architecture, a spacecraft features two
imaging payloads: one standard resolution, to which access is not restricted; and one
very high resolution payload, to which access must be restricted for commercial, legal
or national security reasons. To ensure that the security needs for such a mission are
met, the onboard systems must be able to guarantee confidentiality and integrity of
information relating at different security levels. To reliably ensure that these security
needs on a computing platform, the system designer has a number of options:

• A so-called “system-high” approach, operating the entire spacecraft, including
all software applications, at the highest level of security required. This has
major implications on the cost of system development and validation.

• Separate the elements of the system which correspond to different security
levels onto separate hardware, limiting their interaction and adding a mass,
power and volume penalties.

• Permit applications handling information at different security levels to be
combined on a single computing platform by associating security information
with each system entity (applications, devices etc.) and controlling access
through security policies and mechanisms implemented in the operating
system.

In the third approach presented above, the resulting multi-level security (MLS)
operating system is typically large and complex, preventing assurance of its operation.
A solution to this problem is to require the operating system to provide only reliable
separation mechanisms; security levels and policy then become issues for applications
and the operating system becomes simpler.

Using SpaceWire In a Securely Partitioned Computing Architecture

467

This solution is known as Multiple Independent Levels of Security (MILS) [3] and is,
in many ways, similar to the TSP used in systems such as IMA, with the addition of
security requirements. A system taking a MILS approach will be structured like that
shown in Figure 1, with a small operating system, the separation microkernel,
enforcing time and space partitioning, and applications in partitions, which may have
their own operating systems.

This architecture shares many features with those of hypervisors and virtual machine
monitors. The partition applications should be unaware of the other partitions on the
system; in theory it should not matter if two partitions are executed on the same, or
different, hardware platforms from each other. In a system where the largest concern
is safety this separation is enforced to ensure a partition, either through normal
operation or by malfunction, can not unintentionally influence the integrity of another
partition. In a secure system this concept is extended to enforce both the integrity and
confidentiality domains for the partitioned applications, i.e. it must not be possible to
transfer information between two partitions, except where explicitly permitted by
security policy. At the same time, the spectrum of statistical threats of malfunction
and environmental influence is enlarged by the presence of a qualified, malicious
human attacker. In the context of confidentiality, a covert channel is defined as any
communication between partitions that is in contravention of the the system security
policy. Two types of covert channels are typically considered: a storage channel
involves the modification of a shared object, the state of which is used to transfer
information; whereas a timing channel involves affecting the relative timing of
observable events, such as the observation of the storage or timing events of one
partition by another, which is used to impart information.

2.3 SPACEWIRE IN A TSP SYSTEM

Clearly, an onboard computer does not exist in isolation: it must interface to other
onboard devices in order to receive inputs and produce outputs. SpaceWire is
growing in popularity as an onboard communications medium, and is increasingly
being used to interface onboard computers to both payload and platform devices. The
effects of introducing SpaceWire into a securely partitioned system (i.e. one using
secure TSP) fall into three categories:

• the interface between the onboard computer and the SpaceWire network, this
may be part of a System-on-Chip (SoC) or it may be a separate device;

• the SpaceWire network itself, and what can be done to avoid the costs of
creating two, or more, independent networks for different security levels;

• the communications software architecture, executing on the onboard
computer, which is used by applications to interact with SpaceWire devices.

These topics are addressed in the following sections. As will be shown, SpaceWire is
well suited for use in a securely partitioned architecture: a routed network is
inherently more flexible and easier to secure than a shared medium bus such as MIL-
STD-1553B or CAN.

SpaceWire Missions and Applications

468

3 SECURELY PARTITIONING THE SPACEWIRE INTERFACE
Where the SpaceWire network interfaces to the onboard processor, consideration must
be given to the principles of TSP. Such considerations impact the way in which the
SpaceWire interface(s) is/are to be connected to the processor, affecting address
decoding and the use of interrupts and DMA.

As mentioned above, the MMU is the typical mechanism for enforcing spatial
partitioning. In order to control access to interfaces, such as SpaceWire, all parts of
the interface must be memory mapped. The use of alternate address spaces which are
not controlled by the MMU, such as dedicated I/O spaces, should be avoided.
Although the use of such spaces is typically restricted to a privileged processor mode,
this requires the operating system to be involved in I/O transactions, as no application
is permitted to run in a privileged mode, and increases its complexity. Where a
system has multiple SpaceWire interfaces, it may be advantageous to permit these
interfaces to be used by individual partitions, independently from one another. This
requires that the memory-mapped resources associated with each interface are distinct
(i.e. no shared registers) and that they fall into separate memory pages, so that access
may be controlled with the MMU. The use of an MMU implies that an application
sees only virtual, rather than physical, addresses. An interface, such as SpaceWire,
however, will see physical addresses if it attempts a Direct Memory Access (DMA)
transaction. Additionally, a contiguous region of virtual memory does not necessarily
ensure a contiguous region of physical memory: it may therefore be difficult for a
partition application to set up and manage DMA transactions without considerable
operating system assistance. One way to address these issues is to introduce an I/O
MMU, mapping virtual to physical addresses for devices.

Although these techniques ensure spatial separation, the use of DMA causes issues
with temporal partitioning. A DMA transaction claims use of the memory bus, and
access to the memory, which prevent access by the processor. Although the processor
may be executing out of cache this cannot be guaranteed. Should a DMA transaction
on behalf of one partition occur during the processor time allocated to a second
partition, this may affect the safe operation of the second partition and also permit the
second partition to observe one part of the first partition’s operation. Without special
provisions, therefore, DMA is not a safe technique in a TSP system, whether or not
security is a concern. One way to permit the use of DMA is to utilise dedicated, dual-
ported, DMA regions for each interface (see Figure 2). Access to these regions by the
SpaceWire interface is largely independent to that of the processor and processor
timing is not affected by DMA accesses. Buffer management operations, such as
updating read and write pointers, need to be designed to permit concurrent access.

Just as an asynchronous (as far as processor execution is concerned) DMA transaction
adversely affects temporal partitioning, so does the use of interrupts. In a similar
manner to DMA transactions, the occurrence of an interrupt will change the execution
flow of the processor and the timing of an executing partition. If hardware buffers are
appropriately sized a minimum interrupt inter-arrival time can usually be assumed and
with a suitable scheduling scheme, applications may meet their real time deadlines.
However, such impacts on predictable partitioning are likely to be observable from
unrelated partitions, creating an obvious covert channel. The only reliable way to
mitigate this risk is to use polling to service interfaces.

Using SpaceWire In a Securely Partitioned Computing Architecture

469

Processor BusProcessor Bus

SpaceWire InterfaceSpaceWire Interface

Dual Port RAMDual Port RAM

DMA EngineDMA Engine ConfigurationConfiguration

Main RAMMain RAM… …ProcessorProcessor

Figure 2: SpaceWire Interface using DMA on Dual-Port RAM

In the case of a SpaceWire interface, providing FIFOs are sufficiently sized for link
transmit and receive rates, it should be possible to handle data transfers using polling.
The handling of time-codes is potentially more complicated, and depends on the
interpretation of time-codes in the system. If the arrival time of a time-code is critical,
for example to update a local time counter, the handling of this may be best done
without software intervention, as waiting for a polled response may introduce an
unacceptable delay.

4 SECURELY PARTITIONING THE SPACEWIRE NETWORK
The most obvious way to separate SpaceWire resources corresponding to different
security levels is to construct several distinct SpaceWire networks. These networks
can be accessed from separate interfaces at the processor, using the guidance above.
However, if these separate networks are any more that single links, this technique
involves the duplication of routing resources, potentially resulting in mass, power and
complexity penalties.

One way to safely partition a SpaceWire network is to restrict the destination address
at the head of packets transmitted through an interface. Such a restriction may be
implemented in either hardware or trusted software and involves only the first byte of
the packet. Firstly, by restricting packets to use only logical addressing, it can be
assured that the interface may not address packets to the configuration port of a router,
or any other device. This ensures the safety and security of a configured network.
Secondly, by restricting the logical addresses to which an interface may address
packets, the network may be spatially partitioned along lines of function, security, or
whatever suits the mission. This scheme directly associates logical addresses with
security domains, and may require multiple logical addresses per node. This argument
holds as long as logical addresses are never deleted by a router, so-called regional
logical addressing. If this is not the case, and logical addresses are deleted, a further
check must either be made at the interface (for the second logical address) or, more
elegantly, at the entry point to this new region. The only interfaces that may
configure the network are those permitted to use path addressing, which, having
unrestricted access to all devices, must be fully trusted. The scheme outlined here
permits the strict spatial partitioning of a SpaceWire network, requiring changes only
to interface hardware and/or software, with no changes necessary to routers.

SpaceWire Missions and Applications

470

A spatially partitioned network is sufficient providing that no resources, i.e. devices or
links, are shared between partitions. As routers are generally full crossbar devices,
they may be shared between partitions without compromise. Where resources are
shared, these must be temporally partitioned. As with the partitioning of processor
execution time, to ensure both safety and security this network bandwidth partitioning
must be deterministic.

Recent work has seen a number of proposals for the introduction of deterministic
and/or low-latency traffic on SpaceWire networks, with the aim of handling time-
critical command and control data. The SpaceWire-RT [4], SpaceWire-T [5] and
SpaceWire-D [6] protocol proposals all share a common approach in that network
bandwidth is time division multiplexed, with SpaceWire time-codes indicating the
boundaries between time slots. This technique is deterministic and requires no change
to network routers for its operation. Time slots are pre-allocated to interfaces by the
system designer, such that the available bandwidth of any shared resource, including
those shared between multiple interfaces, is not exceeded. As with the spatial
partitioning case, this primarily relies on trusted network interfaces on all devices.
The handling of non-trusted devices would require the enforcement of the network
schedule either between device and router, or within a modified router.

Another proposal for the division of network bandwidth, utilises virtual channels to
multiplex many channels of traffic over a single link, and by extension, an entire
network [7]. The bandwidth of a link is given to whichever virtual channel has data to
send and is of the highest priority. Low latency is assured by permitting high priority
traffic to pre-empt low priority traffic. Whilst this scheme does successfully permit
ad-hoc low latency traffic, without careful design low-priority traffic can be starved
from a network. Furthermore, for secure partitioning purposes, the delivery of traffic
of any but the highest priority is non-deterministic. This non-determinism may be
accounted for in terms of system safety, but gives rise to the potential for covert
channels, the risk of which is application dependent. The use of virtual channels,
then, may not be sufficient on its own, requiring the introduction of time division
multiplexing to ensure fairness and determinism. In this case the various virtual
channels need not be treated hierarchically, but could be scheduled, for example,
cyclically at routers. Whilst elegant and guaranteeing temporal partitioning, such a
technique would require wholesale changes to both interfaces and routers.

As can be seen from the discussion in this section, SpaceWire routing resources form
a critical part of a network. Existing routers may be utilised through the introduction
of trusted software and/or hardware at every interface. This assumes that the target of
the security effort is the TSP system, and that the potential complexity of such a
trusted interface is sufficiently low to permit security assurance. If the network itself
is to be secured against un-trusted devices, logical address and time slot verification
functions would have to be incorporated into routers.

Trust in routing resources is key to the operation of a securely partitioned SpaceWire
network. The configuration of routers has the potential to enforce spatial and, perhaps
in the future, temporal partitioning. However, during the power up of a router, before
it has been configured, it is potentially vulnerable to configuration by an un-trusted
device. One way to prevent this issue is to associate a small configuration ROM with
each router, from which a failsafe configuration may be loaded. This would “lock

Using SpaceWire In a Securely Partitioned Computing Architecture

471

down” the network into a safe and secure state, pending configuration from a trusted
source.

5 SECURELY PARTITIONING ONBOARD COMMUNICATIONS SOFTWARE
The previous sections have left open the issue of where, in a partitioned architecture,
the software stack responsible for communications should be placed. In Section 3, the
possibility for assigning SpaceWire interfaces to partitions was discussed; however, in
Section 4, the introduction of sanity checks on destination logical addresses could
require trusted interface software. This indicates a trade-off between a decentralised
approach, in which the operations of partitions are self-contained and may be
validated separately; and a more centralised approach in which a single, trusted,
partition is responsible for managing the SpaceWire interfaces.

The latter approach was taken by SciSys in the Payloads with Resource-efficient
Integration for Science Missions (PRISM) project. Here, the RTEMS operating
system was modified to include temporal partitions, including the enforcement of both
processor execution time and I/O bandwidth budgets. Including the concept of I/O
partitioning in the system architecture permitted the I/O handling software to be
located in a single system partition, and shared between other applications. Whilst a
promising approach for integration and increased safety, the PRISM operating system
is relatively complex and would be difficult to assure for security purposes.

The best way to reduce the potential assurance effort is to minimise the size of the
trusted component. A good example is the application of the CCSDS SOIS stack [].
Here, the SpaceWire subnetwork services could be associated with an individual
interface, perhaps in a trusted partition, whereas the application support services
would be placed in one or more un-trusted partitions. Especially where there is good
hardware support, the SpaceWire subnetwork services may be relatively simple,
increasing the potential for assurance. The SOIS architecture provides a good
template for the decentralisation/centralisation split in the onboard communications
architecture.

6 CONCLUSIONS

6.1 REQUIREMENTS FOR THE USE OF SPACEWIRE IN A SECURELY PARTITIONED
ARCHITECTURE

As a routed network of flexible topology, SpaceWire has the potential to integrate
well into a securely partitioned system. However, there are a number of challenges
when applying secure TSP to SpaceWire: some are specific to SpaceWire and others
less so.

At the interface level, consideration should be given to the potential for spatially
protecting interfaces using the MMU. This requires memory-mapped hardware, laid
out in consideration for page boundaries. Shared resources, such as the processor,
must be deterministically shared in time and therefore cannot be disrupted by
asynchronous events such as DMA or interrupts. The design of SpaceWire interfaces
and driver software should account for this.

SpaceWire Missions and Applications

472

At the network level, it is possible to spatially partition a SpaceWire network using
logical address verification at interfaces and careful network design. Deterministic
temporal partitioning, such as that employed in SpaceWire-(R)T and SpaceWire-D,
meets the requirements for TSP; whereas the use of virtual channels may not when
applied alone. With the addition of time-division multiplexing it becomes more
powerful. Simple network TSP can be introduced using trusted hardware/software at
interfaces, and is sufficient if the focus of security requirements is a software TSP
system. The introduction of un-trusted devices on a SpaceWire network necessitates
modifications to router technology. To ensure router enforcement of partitioning,
routers should ideally use a configuration ROM to ensure a trusted boot.

At the software level, where an interface must be trusted, and shared between multiple
partitions, the trusted code should be minimised. The subnetwork layer in SOIS is a
logical point to split the communications stack.

6.2 LOOKING TO THE FUTURE

SpaceWire has the potential to play a central role in TSP architectures including
securely partitioned onboard systems, providing that consideration is given to the
topics presented in this paper. Some issues, such as those at the interface level, can be
addressed in the short term, either by use of existing devices or minor modification to
current IP. A SpaceWire network can be securely partitioned using current
technology, providing all node interfaces are trusted. Relaxing this caveat requires
modification to routers: as the arbiter of network traffic, routers are the appropriate
place for the secure control of network bandwidth. For the current generation of
SpaceWire devices such changes would be an addition or modification to standard
behaviour; as thought is given to the next generation of SpaceWire technology, it is
suggested that (secure) TSP should be carefully considered as it is likely to become an
important technique in the design of spacecraft onboard systems.

7 REFERENCES
1. Airlines Electronic Engineering Committee, ‘ARINC Specification 651: Design

Guidance for Integrated Modular Avionics’, 1997.

2. Integrated Modular Avionics for Space. ESA ITT AO/1-6295/09/NL/LvH.

3. Alves-Foss, J. et al, ‘The MILS Architectures for High Assurance Embedded
Systems”’ International Journal of Embedded Systems, 2(3/4), 2006.

4. University of Dundee, “SpaceWire-RT: Initial Protocol Definition’, Version 2.1,
Available from the minutes of the 12th SpaceWire Working Group,
://spacewire.esa.int/WG/SpaceWire/, 2010.

5. Parkes, S., “SpaceWire-RT and SpaceWire-T’, Available from the minutes of the
14th SpaceWire Working Group, ://spacewire.esa.int/WG/SpaceWire/, 2010.

6. University of Dundee, “SpaceWire-D Protocol’, Available from the minutes of the
14th SpaceWire Working Group, ://spacewire.esa.int/WG/SpaceWire/, 2010.

7. Cook and Walker, ‘Virtual Networks’, Available from the minutes of the 13th
SpaceWire Working Group, ://spacewire.esa.int/WG/SpaceWire/, 2010.

Using SpaceWire In a Securely Partitioned Computing Architecture

473

http://spacewire.esa.int/
http://spacewire.esa.int/
http://spacewire.esa.int/
http://spacewire.esa.int/

