
SPACEWIRE-D PROTOTYPING

Session: SpaceWire Networks and Protocols

Short Paper

Albert Ferrer, Steve Parkes

Space Technology Centre, School of Computing, University of Dundee, Dundee, UK
E-mail: aferrer@computing.dundee.ac.uk

ABSTRACT

SpaceWire-D is a new protocol developed for SpaceWire to provide deterministic

delivery and offer guarantees in latency and bandwidth. This paper presents the main

design drivers of SpaceWire-D, the key concepts involved, and the results of software

prototyping using flight qualified SpaceWire components.

1 INTRODUCTION

SpaceWire [1] provides a versatile network architecture for onboard data-handling

using switches and bi-directional serial links. It delivers the high throughput required

for payload data with low implementation cost. However, it does not provide

guarantees in the packet latency due to network congestion. Besides, the use of

wormhole switching increases the worst case latency of packets that use shared links

on the way to their destination.

SpaceWire-D [2,3] is a protocol that provides guarantees in latency and throughput by

ensuring deterministic packet delivery. A Time Division Multiplexing (TDM)

technique allows delivering data within predetermined time constraints. TDM is

implemented using SpaceWire time-code characters sent periodically to determine the

time-slots. A suitable network schedule determines when each node can send data,

imposing that there is never congestion in the network. Without congestion,

throughput and latency are deterministic and can be set by the user via scheduling.

This is in contrast with other techniques that attempt to only mitigate network

congestion and rely on network simulations to obtain throughput and latency figures.

Therefore, TDM allows assigning, independently, the worse case packet latency for

command and control operations and the minimal throughput for payload data. It

overcomes the traditional conflict between these two network metrics. This generic

approach was also proposed for SpaceWire-RT [4], a protocol that targets reliability,

in addition to timeliness issues.

The other main characteristic of SpaceWire-D is the utilization of RMAP protocol [5]

to encapsulate the user data into SpaceWire packets. RMAP protocol provides a

convenient way to read and write to remote memory address space using SpaceWire

and is being proposed for the operation of the Plug and Play protocol. Therefore,

SpaceWire-D provides deterministic delivery to these basic operations with high

efficiency and low cost, without limiting further possibilities with optional functions

and upper layer protocols.

SpaceWire-D Prototyping

391

2 DESIGN DRIVERS

SpaceWire-D was designed to be simple and effective. High performance requiring

high complexity was avoided. Functionalities that are not required to achieve

deterministic behaviour do not belong to the protocol core but instead are optionally

implemented by upper level protocols. Existing SpaceWire technologies and protocols

are used to take advantage of available devices and services. Finally, some flexibility

is sacrificed in benefit of a low cost solution to most user cases.

3 SCHEDULING

SpaceWire defines at link level a high-priority low-latency character that provides a

tick signal and an associated code that is broadcasted to all the network. Called time-

code, it is a natural choice for distributing the synchronization signal that determines

the current timeslot of the network.

Transaction

Most avionic systems use command and response transactions requiring a

bidirectional communication. The requirements on latency and bandwidth apply to

the whole transaction, not to the individual command/response packets. Therefore, the

scheduling refers to transactions, and the reservation of bidirectional links, not

unidirectional paths to the destination. This usually improves network usage as

timeslots of fixed length are not wasted in small command packets.

Schedule table

During a specific timeslot, one or multiple nodes are allowed to initiate a single

transaction, following a network schedule table. Multiple concurrent initiator nodes

are allowed providing that they do not use any of the same SpaceWire links in the

network. To enforce that, each initiator node may implement a local schedule vector

that determines for each slot which destinations, represented by logical addresses, are

valid. Note that multiple destination logical addresses can represent the same

destination node but may indicate the use of different paths or different subunits

within the destination node.

This destination list could be empty or could indicate that any destination is valid. If

multiple destinations are provided, the node initiates a transaction with the first

destination in the list with a pending transaction request. This simple priority

mechanism allows to guarantee certain bandwidth and latency for the first destination

in the list without loosing the bandwidth allocated when there is no pending

transaction request for this destination. Besides, it provides more flexibility that the

scheduling implemented for SpaceWire-RT protocol, which only allowed one

destination node per timeslot.

An example schedule table is illustrated in Figure 1. It schematically represents a

typical application for on board data handling. A mass memory unit is reading data

from each instrument and writing data to a telemetry system, while a control

processor is controlling instruments and stores housekeeping information in the Mass

Memory. Therefore, the control processor unit is a initiator node, the instruments

(addresses 40,41,42) and the telemetry system (address 60) are target nodes, and the

mass memory (address 50) is an initiator and a target.

SpaceWire Networks and Protocols

392

Time-slot 0 1 2 3 ... 63

Control Processor Targets 41, 42, 50 42, 40, 50 40, 41, 50 41, 42, 50 40, 41, 50
Mass Memory Targets 40, 60 41, 60 42, 60 40, 60 42, 60

Figure 1: Example of a Schedule Table.

In this example table, the control processor only writes data to the Mass Memory

when it does not have to issue control commands to the instruments, which have

tighter latency requirements. A new command can be sent to any of the instruments in

less than two timeslots (i.e. 100µs latency if a slot last 50µs).

4 TRANSACTION LAYER

User data is encapsulated in the data field of RMAP packets. RMAP protocol

provides read and write operations on remote memory addresses with optional

acknowledgement for write operations. RMAP targets are usually implemented in

hardware and should execute RMAP operations within a few microseconds, excluding

the reception or sending time. Even in case of error all SpaceWire data characters

should be consumed at the destination so a SpaceWire link never gets blocked. This is

the case of most of available RMAP implementations.

The maximum data length of a RMAP packet is limited by the protocol (i.e. 512

bytes). Bigger user data units can be accommodated by using consecutive slots or by

implementing a segmentation layer.

5 FDIR FUNCTIONS

Fault detection is provided using the optional acknowledge feature of RMAP and the

SpaceWire link layer error detection. This covers link errors, router and node interface

failures, and all system errors covered by the RMAP protocol. Synchronization errors

due to system clock failure or missing/invalid time-codes are detected using a local

clock synchronized with the period of time-code arrival (timeslot period).

Upon error detection, recovery functions such as retrial mechanisms or redundancy

switching are left to upper layer protocols or to the application. This reduces the

complexity of the protocol and allows the user to use the best method adequate to a

particular scenario.

6 PLUG AND PLAY (PNP) SUPPORT

SpaceWire-D supports plug and play efficiently, by using the same mechanism, the

RMAP protocol, for its operation. New nodes attached to the network are detected by

the network manager, as a result of a change in the status of the link, which the new

node is attached. The network manager is responsible for the SpaceWire-D related

configuration of the new node.

Alternatively, new initiator nodes can also notify the network manager of its presence,

but only when the timeslot number is zero. New initiators only operates once its local

clock is synchronized with the period of the time-codes received and the network

manager logical address is present in the attached router configuration space. Besides,

initiators can only perform read and write RMAP operations with a maximum of four

SpaceWire-D Prototyping

393

bytes. The maximum number of devices that can be connected simultaneously in a

already configured network depends on the maximum data length.

If no timeslots are received and the initiator node is configured as a potential network

manager then network discovery algorithms can asynchronously discover and

configure the network.

7 PROTOCOL STACK

The protocol stack for SpaceWire when using SpaceWire-D is illustrated in Figure 2.

Extra functionalities not directly provided by SpaceWire-D are the Packet Transfer

Protocol (PTP), the segmentation function and the Retry/Redundancy layer.

SpaceWire

PTP

RMAP

SpW PnP

User Application

Scheduling

Retry/Redundancy

Segmentation

Figure 2: SpaceWire protocol stack using SpaceWire-D

The segmentation function is only required when the user data units are bigger than

the maximum SpaceWire-D data length, and a schedule with consecutive slots is not

considered. It operates by creating multiple RMAP transactions that use the maximum

data length except the last one. The RMAP address is incremented by the data length

value for each transaction. Optionally, one byte of the transaction field of RMAP can

be used to indicate the user data unit sequence.

The optional retry/and redundant layer provides recovery mechanisms when a

network error occurs, i.e. an RMAP acknowledge is missing. This can be check at the

beginning of the next timeslot or after a arbitrary timeout has elapsed. This later case

is more complex and requires the use of one byte of the transaction field of RMAP to

keep track of the transaction number.

The Protocol Transfer Protocol provides the functionality required to send user

messages to another node using packet buffers. Both a push and a pull type of packet

transfer capability could be provided using RMAP writes or reads respectively. The

transaction field of RMAP is used to identify which packets belong to a user message

or user data unit. This layer can provide notifications/interruptions that a new message

is available or has been sent, and the size of the message. It can also notify that one or

more messages have been processed at the destination. This provides a kind of

SpaceWire Networks and Protocols

394

application acknowledge and an end to end flow control mechanism that can be useful

for pipelined data processing.

8 SOFTWARE PROTOTYPES

SpaceWire-D have been prototyped in software using the LEON processor of the

Remote Terminal Controller (RTC, AT7913E) [6]. The essential SpaceWire-D

functions and the optional segmentation function have been successfully

implemented. A local clock synchronized with the time-code period triggers the

sending of data with less than five microseconds accuracy. The CPU usage is low

when using a data length of 512 bytes. Thanks to the use of the RMAP hardware

support of the RTC, only the acknowledge packets have to be processed by software.

The user application interface is based on the configuration of local channels that

define a logical address and the RMAP transaction configuration. The schedule is

programmed with a list of valid channel identifiers for each time-slot. This identifier

is used to confirm that an RMAP transaction has been executed without errors.

9 CONCLUSIONS

SpaceWire-D provides efficient deterministic data delivery over SpaceWire using

RMAP transactions. This allows to meet latency and bandwidth requirements of the

onboard network at design time. The protocol provides read/write remote memory

functions with error detection capabilities. It also provides the foundations to support

Plug and play, higher reliability and message transfer services.

SpaceWire-D has been prototyped on space qualified ASICs using software

implementations with low CPU usage. Hardware implementations will benefit from

existing RMAP components.

10 REFERENCES

1. ECSS, “SpaceWire – Links, nodes, routers and networks”, ECSS-E-ST-50-12C,

July 2008, available from http://www.ecss.nl.

2. S. Parkes and A. Ferrer-Florit, “SpaceWire-D Deterministic Control and Data

Delivery Over SpaceWire Networks”, ESA Contract No. 220774-07-NL/LvH,

University of Dundee, April 2010, available from

http://spacewire.esa.int/WG/SpaceWire/

3. S.Parkes, A. Ferrer “SpaceWire-D: Deterministic Data Delivery with SpaceWire”

International SpaceWire Conference, St Petersburg, Russia, June 2010.

4. A. Ferrer-Florit, “Unified communication infrastructure for small satellites”,

International Astronautical Congress, October 2009 (IAC-09.B4.6A.1)

5. ECSS, “SpaceWire - Remote memory access protocol” ECSS-E-ST-50-52C, 5

February 2010, available from http://www.ecss.nl.

6. ESA/Saab, “SpaceWire Remote Terminal Controller”,

http://spacewire.esa.int/content/Devices/RTC.php .

SpaceWire-D Prototyping

395

