
THE ADAPTATION AND IMPLEMENTATION OF SPACEWIRE-RT FOR THE

MARC PROJECT

Session: SpaceWire Networks and Protocols

Short Paper

Stuart Fowell, Patricia Lopez-Cueva

SciSys UK Ltd, Clothier Road, Bristol, BS4 5SS, U
Alan Senior

Systems Engineering and Assessment (SEA) Ltd, Somerset, BA11 6TA, UK
Omar Emam

EADS Astrium, Stevenage, Hertfordshire, SG1 2AS, UK
Wahida Gasti

ESA/ESTEC, 2200 AG Noordwijk ZH, The Netherlands
E-mail: stuart.fowell@scisys.co.uk, patricia.lopez-cueva@scisys.co.uk,

alan.senior@sea.co.uk, omar.emam@astrium.eads.net, wahida.gasti@esa.int

ABSTRACT

This paper describes the application and implementation of the SpaceWire-RT

protocol in the MARC project: a practical scenario, utilising representative flight

hardware and next-generation network architectures. A relevant subset of the protocol

was selected and implemented entirely in software and was adapted to communicate

with hardware not specifically designed for a SpaceWire-RT system. Additionally, the

context of a representative flight software system raised issues such as

synchronisation which were not considered by SpaceWire-RT. The paper closes by

summarising the lessons for timely and reliable use of SpaceWire that can be drawn

from this detailed project, considering the complete communications stack from

subnetwork to application interface.

1 OVERVIEW OF THE MARC PROJECT AND THE APPLICATION OF SPACEWIRE-

RT

The Modular Architecture for Robust Computing (MARC) [1] is an ESA GSTP mini-

project being undertaken by SciSys, Astrium UK and SEA. MARC is developing a

decentralised onboard computer [2] using a SpaceWire network on a backplane and

SOIS [3] services as a communication backbone with a hierarchical FDIR

mechanism. The MARC demonstrator architecture is illustrated in Figure 1.

The Adaptation and Implementation of SpaceWire-RT for the MARC Project

397

Core Computing Module
LEON2

Solid State Mass Memory
Module

Memory
Array
FPGA

M
em

M
od

M
em

M
od

M
em

M
od

Emulation PC

USB


SpaceWire

CCM I/F
FPGA

RAM

Debug

FLASH

Power
Switches

SpaceWire links (2)

EGSE

Power supply

USB

RS232

M
em

M
od

Backplane

SpaceWire link(s)

General Computing
Module (PowerPC)

(Astrium supplied)

MARC Demonstration Rack

P
ow

er

Power Wiring on backplane

CHRC/TMTC Module

P
ow

er

CHRC
FPGA

Spare Modules

SpaceWire Network on backplane

S
pa

ce
W

ire
 c

ha
nn

el
s

S
pa

ce
W

ire
 c

ha
nn

el
s

S
pa

ce
W

ire
 c

ha
nn

el
s

RAM

FLASH

P
ow

er

P
ow

er

P
ow

er

S
pa

ce
W

ire
 c

ha
nn

el
s

Figure 1. MARC Demonstrator Architecture

The hardware architecture is closely coupled to the software aims of the Generic

Fault-tolerant Software Architecture using SOIS (GenFAS) software framework,

developed by SciSys. This provides a PUS-based Data Handling Services,

communication functions using SOIS, FDIR management and a software deployment

and upgrade mechanism. The GenFAS software architecture is illustrated in Figure 2.

System Functions & Common App. Services Layer

System Functions

CDHS

SOIS Application Support Layer

SOIS Subnetwork Layer

CCM/GCM Physical Layer

CPU SCETTimers UARTSFGMSpaceWire
H/WEDAC Watchdog

Data Link Layer

SpW Driver

SpaceWire-RT

Packet
Service

Memory
Access
Service

Synchronisation
Service

Message
Transfer
Service

Time
Access
Service

Predictable C
om

putational Environm
ent

H
ard R

TO
S

BSP
Boot Loader

Software
Mode

Manager

PUS
Services

FDIR
Manager

Config.
Manager

Onboard Software Applications

Task
Service

Memory Store Services

Packet Store
Access Service

Memory Access
Controller

Raw Memory
Access Service

Command & Data Acquisition
Services

Device
Access
Service

Device Data
Pooling
Service

Network
Management

Service

System
Context
Manager

Power
Manager

Test
Service

Data PoolPUS Packet
Distribution

TM Packet
Store

Memory Store
Manager

Figure 2. GenFAS Software Architecture

A crucial part of the SOIS software stack for the MARC project is the provision of a

suitable SpaceWire service guaranteeing timely delivery of data. To achieve this,

SciSys applied the proposed SpaceWire-RT protocol [4]. The protocol aims to ensure

timeliness by utilising time-codes to divide the available network bandwidth in pre-

allocated slots and specifies facilities for reliability and redundancy management.

SpaceWire Networks and Protocols

398

2 ADAPTATION AND IMPLEMENTATION OF SPACEWIRE-RT

2.1 GOALS AND CONSTRAINTS

It was a key goal of MARC to implement SpaceWire-RT to provide the required

SOIS Quality-of-Service (QoS) classes for communication across the MARC

SpaceWire network, making use of the scheduled SpaceWire-RT configuration. This

then is to be used as a basis for assessing the implementation and use of the

SpaceWire-RT draft specification.

The implementation was constrained to be made only in software, with the ESA

RMAP [5] and SpaceWire Codec IP cores being employed on the MARC Core

Computing Modules (CCMs). It was anticipated that implementing SpaceWire-RT

protocols, including flow control, in software would have performance implications.

A second constraint was that communication must be supported with legacy RMAP-

based nodes. This has two implications; communication between CCMs and legacy

nodes must be by using RMAP and that the legacy nodes would have no knowledge

of the SpaceWire-RT imposed network schedule. As a consequence, the CCMs must

be able to send and receive RMAP packets with no SpaceWire-RT protocol

encapsulation and the SpaceWire network communication must be managed such that

the legacy nodes never asynchronously transmit SpaceWire packets, i.e. it is only in a

manner synchronised to the SpaceWire network such that it can be taken into account

when determining the SpaceWire-RT schedule.

2.2 SELECTION OF SPACEWIRE-RT FEATURES AND ADAPTATIONS

Based on an assessment of typical information flows and associated QoS required by

functions in MARC (function chains, FDIR etc), the following features of SpaceWire-

RT were selected for implementing:

 Basic, Best-Effort, Assured and Reserved QoS (Guaranteed not required).

 No redundancy (handled at a system level by switching SpaceWire network

plane in a coordinated manner by the FDIR applications).

 No group adaptive routing (incompatible with SOIS QoS, not required for

redundancy and no information flow required multiple, parallel SpaceWire

links that it provides).

 No prioritisation of Reserved QoS traffic (not required for information flows,

subsequently removed from SOIS).

 No “opportunistic” allocation of unused, reserved time-slots (overcomplicates

scheduling analysis and unnecessary).

 Simplified API based on maximum user packet sizes (optimising copying).

A number of the requirements and constraints of MARC were not met by the

SpaceWire-RT specification and so the following extensions and adaptations were

required:

 Addition of Raw channels (Best-Effort or Reserved QoS, no SpaceWire-RT

encapsulation) and Raw time-slots (scheduling of raw channels) – used for

communication with legacy RMAP or PTP-based nodes.

The Adaptation and Implementation of SpaceWire-RT for the MARC Project

399

 RMAP packets limited so that a transfer fits within the duration of a time-slot.

RMAP reply packets assumed to be received on channel number + 1 from that

used for command packet.

 Extended flow control bit fields (to support larger buffers).

 No kill mechanism implemented (not fully defined and not able to implement

in software with existing IP cores).

 Addition of a controlled configuration mechanism for nodes and routers

(initialisation and any subsequent re-configurations by each node while

SpaceWire-RT schedule suspended).

 Integration with SOIS Synchronisation Service (dual use of SpaceWire time-

codes for time distribution and synchronisation of SpaceWire-RT time slots).

2.3 IMPLEMENTATION OF SPACEWIRE-RT

Figure 3 is an illustration of the implementation of SpaceWire-RT.

RMAP
I/F

SpaceWire
Codec

I/F

SpW-RT
Scheduler

RMAP
I/F

SpaceWire
Codec

I/F

Time
-Slot

0

Time
-Slot

1

Time
-Slot

2

...

timeOutgoing Channels

Incoming Channels

Schedule Table

SpaceWire
Memory
Access
Service

SpaceWire
Packet
Service

Applications
& Higher

Level SOIS
Services

Local SCET
I/F

Time-Code
ISR

Time
-Slot
63

Figure 3. SpaceWire-RT Implementation Block Diagram

The channel interface from the SpaceWire-RT specification was preserved as much as

possible, so as to minimise the effort required in any future port to a hardware-based

implementation. Special consideration was made for handling of RMAP and the use

of RMAP IP Core as a hardware accelerator. For non-RMAP packets, the RMAP IP

Core‟s bypass mechanism was used, with additional hardware support functionality

for calculating CRCs. Of course, because SpaceWire-RT was implemented in

software on a single processor; send and receive, multiple ports, etc. had to be

implemented in a serial algorithm.

The SOIS Memory Access Service mapped straight onto RMAP. For the SOIS Packet

Service, the CCSDS Packet Transfer Protcool (PTP) [6] was employed with different

information flows requiring both raw PTP packets and encapsulated in SpaceWire-

RT.

Finally, tuning of the rate of sending time-codes was required, trading-off between

resolution of time distribution and maximum rate at which time slots could be

handled.

SpaceWire Networks and Protocols

400

3 LESSONS LEARNT ON THE USE OF SPACEWIRE-RT

SpaceWire-RT is both very feature-rich and yet still being prototyped. To make

practical use in an onboard environment to flight standards requires selection of only

features appropriate to the development (reducing complexity and cost of validation)

and to make assumptions, extensions and adaptations to overcome the current status

of its (incomplete) specification. Standardisation of an appropriate subset and

recommendations into its use in conjunction with existing and forthcoming

SpaceWire and SOIS standards will simplify its deployment.

Use of SpaceWire-RT requires careful management of the complex configuration of

channels and time-slots across each node in the SpaceWire network. As a SpaceWire

network is inherently more complex than, say, a MIL-STD-1553B bus, offline

analysis tools are strongly recommended to analyse communication scenarios, based

on actual information flows and how they map down to packets on the network, and

to automatically generate the resulting configuration data. Part of this is addressed by

the analysis tool being produced by EADS Astrium as part of the MARC project [7].

Clearly a hardware-based implementation would be more performant, handling

send/receive in parallel and multiple ports. However, the decision on the

hardware/software split should also take into account the adaptability of software.

4 CONCLUSIONS

An adapted subset of SpaceWire-RT has been successfully implemented in software

using hardware-support functions, integrated with SOIS services and is being used in

the MARC demonstrator to provide managed timely communications across a

SpaceWire network in a decentralised onboard computer.

5 REFERENCES

1. “Generic FT Software Architecture using SOIS for MARC”, ESTEC Contract

Number 20863/07/NL/LvH.

2. “Advanced Robust Processing Architecture „ARPA‟ for Modular Architecture for

Robust Computing „MARC‟”, ESTEC Contract Number 21034/07/NL/LvH.

3. CCSDS, “Spacecraft Onboard Interface Services – Informational Report”,

CCSDS 850.0-G-1, Green Book, Issue 1.0, June 2007

4. Parkes and Florit, “SpaceNet – SpaceWire-RT Initial Protocol Definition”, SpW-

RT WP3-200.1, Draft A Issue 2.1, 30

October 2008.

5. “Space Engineering – SpaceWire – Remote Memory Access Protocol”, ECSS-E-

ST-50-52C, 5 February 2010.

6. “Space Engineering – SpaceWire – CCSDS Packet Transfer Protocol”, ECSS-E-

ST-50-53C, 5 February 2010.

7. Emam et al, “A Software Analysis Tool Supporting FDIR Management for

Systems with SpaceWire Networks – MARC Project”, Proceedings from the 3
rd

International SpaceWire Conference, St. Petersburg, Russia, 2010.

The Adaptation and Implementation of SpaceWire-RT for the MARC Project

401

