
A SPACEWIRE EXTENSION FOR DISTRIBUTED REAL-TIME SYSTEMS 

Session: SpaceWire Networks & Protocols 

Long Paper 

Yusuke Murata, Takuma Kogo and Nobuyuki Yamasaki 

Department of Computer Science, Graduate School of Science and Technology,  
Keio University 

3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8522 Japan 
E-mail: murata@ny.ics.keio.ac.jp, kogo@ny.ics.keio.ac.jp, 

yamasaki@ny.ics.keio.ac.jp 
 

ABSTRACT 

In this paper, we propose a real-time extension scheme for SpaceWire. We designed 

and implemented the proposed real-time SpaceWire function on a Dependable 

Responsive Multithreaded Processor I (D-RMTP I) SiP (System-in-Package) for 

parallel/distributed real-time control, and evaluated the basic performance of the 

proposed SpaceWire network. 

 1. Introduction 

In real-time systems, every real-time task has a time constraint including a deadline 

or a cycle. The time constraint is guaranteed by real-time scheduling algorisms. 

Almost all real-time scheduling algorithms for single/multi-core processors are based 

on pre-emption and the estimation of the worst-case execution time (WCET)[2]. 

Distributed real-time scheduling algorithms are being investigated by extending these 

algorithms. Here, pre-emption is achieved by context switches in processors. In order 

to employ the distributed real-time scheduling algorithms, networks are also required 

to be pre-emptive. Pre-emption on the networks can be achieved by overtaking 

prioritized packets at each node. Hence, we propose a packet overtaking scheme for 

SpaceWire [1].  

The WCET, which is one of the most important requirements for real-time 

scheduling algorithms, is estimated by analyzing a program in non-distributed systems. 

In distributed systems, the estimation of the worst-case network latency is also 

required. The network latency depends on the size of a packet. Since the size of 

packets is not fixed on a SpaceWire network, we divide a SpaceWire packet into fixed 

size flits. Pre-emption of packets and the estimation of the worst-case network latency 

are realized by overtaking prioritized packets and the fixed size flits respectively, so 

that distributed real-time scheduling algorithms [6][7] especially for Responsive Link 

[5], which is the ISO/IEC 24740 real-time communication standard, can be applied to 

the SpaceWire with our proposed scheme.  
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We designed and implemented the proposed SpaceWire on a Responsive 

Multithreaded Processor [3], which is a system-on-chip for parallel/distributed real-

time control, and evaluated the basic performance of the proposed SpaceWire network. 

2. Real-Time Communication 

Many real-time schedulers, based on classical Earliest Deadline First (EDF) and 

Rate Monotonic (RM) algorithms [4], have been proposed. Most real-time operating 

systems based on such real-time schedulers pre-empt and execute tasks in order of 

priority at every tick. Figure 1 shows a sample scheduling based on the EDF. The 

scheduling policy of the EDF is that earlier the deadline, higher the priority. 

 

Figure 1  An EDF sample schedule 

Pre-emptive processing (context switching) is required to realize real-time 

processing. Similarly pre-emptive communication that requires packet overtaking is 

needed to realize real-time communications. Therefore our goal is to realize a real-

time communication architecture that can optimally do packet overtaking on 

SpaceWire, so that each control node can send and receive packets with suitable 

priority given by the real-time schedulers. 

3. Packets Overtaking Scheme 

We propose a packet overtaking scheme to realize pre-emption on a SpaceWire 

network. First we add a priority field to a routing table of SpaceWire. Figure 2 shows 

a routing table format for proposed real-time protocol. The routing table consists of a 

logical destination, a physical output, and a priority. The priority is used for packet 

overtaking which is realized by SpaceWire router switches with prioritized virtual 

channels.  

Logical destination Physical output port priority

1

2

3

…

1

… …

10

22

8bit

3

4 1

 

Figure 2 A routing table format with priority 
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Almost all real-time scheduling algorithms assume the known WCET. The network 

latency depends on the size of a packet and its blocked time. Since the size of packets 

is not fixed on a SpaceWire network, we divide a SpaceWire packet into fixed size 

flits that are control codes and data characters.  We define a new control code in order 

to divide a packet for packet overtaking. Figure 3 shows a real-time control code 

format. 

1P 1 1 1 T0 ・・T１ T50 1 1
 

Figure 4 A real-time control code format 

Figure 4 shows a packet overtaking scheme in a SpaceWire router switch. If a packet 

is overtaken in the midstream of a packet, the control code for the high priority packet 

is added to the head of the high priority packet. After transferring the high priority 

packet, the control code for the low priority packet is added to the head of the low 

priority packet, and the low priority communication restarts. The SpaceWire router 

switch keeps the destination address of the pre-empted packet to transfer the packet.  

Even if a low priority packet is divided by a high priority packet, the low priority 

packet that consists of discontinuous flits can be sent to the correct destination node. 

 

 

Figure 4  A packet overtaking scheme 

Figure 5 shows prioritized router architecture for a real-time SpaceWire network. 

Since a low priority packet can be divided into a few groups of flits due to the flit-

level pre-emption based on priority in the real-time SpaceWire network, a mechanism 

that merges the divided packet that consists of the groups of flits into the original 

packet is required. In case of flit-level pre-emption based on priority, when a router 

restarts sending a low priority packet that was pre-empted by a higher priority packet 

to the corresponding virtual channel of the next router, the virtual channel should be 

specified correctly. In order to solve this problem while keeping compatibility of  

SpaceWire networks, our real-time SpaceWire scheme uses a control code of the 

SpaceWire protocol for flit overtaking. The proposed real-time control code indicates 

the correspondence relation between the virtual channel of the current router and the 

virtual channel of the next router. When a pre-emption occurs at a router, the router 
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switch generates a real-time control code for the high priority packet, and the router 

switch sends the real-time control code to the next router. Then the router switch 

sends the flits of the high priority packet. At the same time, the router controller 

generates a real-time control code for the low priority packet that also indicates the 

virtual channel of the low priority packet of the next router. The real-time control 

code for the high priority packet is sent to the next router and switches the virtual 

channel of the next router correctly. Specifically the high priority packet is buffered to 

another virtual channel for the high priority packet at the next router. When the router 

switch finishes sending the high priority packet, the router restarts to send the low 

priority packet. At this time, the real-time control code for the low priority packet that 

indicates a restart of the low priority packet is sent to the next router to switch the 

virtual channel correctly. Communication of the low priority packet restarts, so that 

the low priority packet is sent and buffered to the reserved virtual channel for the low 

priority packet at the next router. 

 

 

Figure 5 A prioritized router 

 

4. Implementation 

We have implemented the proposed SpaceWire router switch in the Spartan3e FPGA 

on the D-RMTP I (Dependable Responsive Multithreaded Processor I) SiP (System-

in-Package) as shown in Figure 6. The D-RMTP I SiP, which size is 3x3cm, 

integrates the D-RMTP I, four DDR SDRAMs, two flash memory chips, Ethernet phy, 

an FPGA (Spartan3e), etc. The D-RMTP I, which size is 10 x 10mm, is a SoC 

(System-on-Chip) for distributed real-time control, which integrates a real-time 

processing core (RMT PU: 8-way prioritized SMT with 2D vector units), SRAM, 

DDR SDRAM IF, PCI-X, SPI, IEEE1394, Ethernet, PWMs, encoders, UART, etc 

into an ASIC chip as shown in Figure7. All D-RMTP I functions except the 

SpaceWire router switch are integrated into the D-RMTP I chip. The FPGA 

(Spartan3e XC3S500E) is exclusively used for the SpaceWire router switch, so that 

the protocol of the real-time SpaceWire can be changed easily. 
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Figure 6 Photo of D-RMTP I SiP 

 

Figure 7 Block diagram of D-RMTP I SiP 

 

5. Evaluation 

 We implemented the SpaceWire router switch written by Verilog HDL on the 

FPGA. We evaluated the SpaceWire network by RTL simulation using NC-Verilog. 

Figure 8 shows a network topology for the evaluation. Each node generates 64-byte 

packets, which destination addresses are changed at random, under random uniform 

traffic. The average latency of packets and the maximum latency of packets were 

measured, while the network utilization was changed. 
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Figure 8 Network topology 

Figure 9 shows a basic preliminary performance of the proposed SpaceWire network, 

which shows a network latency without priority. While the network utilization 

becomes higher, the average latency of a packet does not increase so much, but the 

maximum latency of a packet increases.  

 

Figure 9 Network latency (base line) 

         

6. Conclusion and future work 

We proposed a real-time extension scheme for SpaceWire. We designed and 

implemented a packet overtaking function for real-time SpaceWiare networks. We 

designed and implemented the proposed SpaceWire router switch on the D-RMTP I 

SiP for parallel/distributed real-time control. We evaluated the basic performance of 

the proposed SpaceWire network. Now we are going to measure the real-time 

performance of the proposed real-time SpaceWire network, including the maximum 

latency and the average latency of each priority packet by RTL simulation. We will 

also measure them by using several D-RMTP I SiPs connected by the proposed 

SpaceWire network. 
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