
A SPACEWIRE EXTENSION FOR DISTRIBUTED REAL-TIME SYSTEMS

Session: SpaceWire Networks & Protocols

Long Paper

Yusuke Murata, Takuma Kogo and Nobuyuki Yamasaki

Department of Computer Science, Graduate School of Science and Technology,
Keio University

3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8522 Japan
E-mail: murata@ny.ics.keio.ac.jp, kogo@ny.ics.keio.ac.jp,

yamasaki@ny.ics.keio.ac.jp

ABSTRACT

In this paper, we propose a real-time extension scheme for SpaceWire. We designed

and implemented the proposed real-time SpaceWire function on a Dependable

Responsive Multithreaded Processor I (D-RMTP I) SiP (System-in-Package) for

parallel/distributed real-time control, and evaluated the basic performance of the

proposed SpaceWire network.

 1. Introduction

In real-time systems, every real-time task has a time constraint including a deadline

or a cycle. The time constraint is guaranteed by real-time scheduling algorisms.

Almost all real-time scheduling algorithms for single/multi-core processors are based

on pre-emption and the estimation of the worst-case execution time (WCET)[2].

Distributed real-time scheduling algorithms are being investigated by extending these

algorithms. Here, pre-emption is achieved by context switches in processors. In order

to employ the distributed real-time scheduling algorithms, networks are also required

to be pre-emptive. Pre-emption on the networks can be achieved by overtaking

prioritized packets at each node. Hence, we propose a packet overtaking scheme for

SpaceWire [1].

The WCET, which is one of the most important requirements for real-time

scheduling algorithms, is estimated by analyzing a program in non-distributed systems.

In distributed systems, the estimation of the worst-case network latency is also

required. The network latency depends on the size of a packet. Since the size of

packets is not fixed on a SpaceWire network, we divide a SpaceWire packet into fixed

size flits. Pre-emption of packets and the estimation of the worst-case network latency

are realized by overtaking prioritized packets and the fixed size flits respectively, so

that distributed real-time scheduling algorithms [6][7] especially for Responsive Link

[5], which is the ISO/IEC 24740 real-time communication standard, can be applied to

the SpaceWire with our proposed scheme.

A SpaceWire Extension For Distributed Real-Time Systems

349

We designed and implemented the proposed SpaceWire on a Responsive

Multithreaded Processor [3], which is a system-on-chip for parallel/distributed real-

time control, and evaluated the basic performance of the proposed SpaceWire network.

2. Real-Time Communication

Many real-time schedulers, based on classical Earliest Deadline First (EDF) and

Rate Monotonic (RM) algorithms [4], have been proposed. Most real-time operating

systems based on such real-time schedulers pre-empt and execute tasks in order of

priority at every tick. Figure 1 shows a sample scheduling based on the EDF. The

scheduling policy of the EDF is that earlier the deadline, higher the priority.

Figure 1 An EDF sample schedule

Pre-emptive processing (context switching) is required to realize real-time

processing. Similarly pre-emptive communication that requires packet overtaking is

needed to realize real-time communications. Therefore our goal is to realize a real-

time communication architecture that can optimally do packet overtaking on

SpaceWire, so that each control node can send and receive packets with suitable

priority given by the real-time schedulers.

3. Packets Overtaking Scheme

We propose a packet overtaking scheme to realize pre-emption on a SpaceWire

network. First we add a priority field to a routing table of SpaceWire. Figure 2 shows

a routing table format for proposed real-time protocol. The routing table consists of a

logical destination, a physical output, and a priority. The priority is used for packet

overtaking which is realized by SpaceWire router switches with prioritized virtual

channels.

Logical destination Physical output port priority

1

2

3

…

1

… …

10

22

8bit

3

4 1

Figure 2 A routing table format with priority

SpaceWire Networks and Protocols

350

Almost all real-time scheduling algorithms assume the known WCET. The network

latency depends on the size of a packet and its blocked time. Since the size of packets

is not fixed on a SpaceWire network, we divide a SpaceWire packet into fixed size

flits that are control codes and data characters. We define a new control code in order

to divide a packet for packet overtaking. Figure 3 shows a real-time control code

format.

1P 1 1 1 T0 ・・T１ T50 1 1

Figure 4 A real-time control code format

Figure 4 shows a packet overtaking scheme in a SpaceWire router switch. If a packet

is overtaken in the midstream of a packet, the control code for the high priority packet

is added to the head of the high priority packet. After transferring the high priority

packet, the control code for the low priority packet is added to the head of the low

priority packet, and the low priority communication restarts. The SpaceWire router

switch keeps the destination address of the pre-empted packet to transfer the packet.

Even if a low priority packet is divided by a high priority packet, the low priority

packet that consists of discontinuous flits can be sent to the correct destination node.

Figure 4 A packet overtaking scheme

Figure 5 shows prioritized router architecture for a real-time SpaceWire network.

Since a low priority packet can be divided into a few groups of flits due to the flit-

level pre-emption based on priority in the real-time SpaceWire network, a mechanism

that merges the divided packet that consists of the groups of flits into the original

packet is required. In case of flit-level pre-emption based on priority, when a router

restarts sending a low priority packet that was pre-empted by a higher priority packet

to the corresponding virtual channel of the next router, the virtual channel should be

specified correctly. In order to solve this problem while keeping compatibility of

SpaceWire networks, our real-time SpaceWire scheme uses a control code of the

SpaceWire protocol for flit overtaking. The proposed real-time control code indicates

the correspondence relation between the virtual channel of the current router and the

virtual channel of the next router. When a pre-emption occurs at a router, the router

A SpaceWire Extension For Distributed Real-Time Systems

351

switch generates a real-time control code for the high priority packet, and the router

switch sends the real-time control code to the next router. Then the router switch

sends the flits of the high priority packet. At the same time, the router controller

generates a real-time control code for the low priority packet that also indicates the

virtual channel of the low priority packet of the next router. The real-time control

code for the high priority packet is sent to the next router and switches the virtual

channel of the next router correctly. Specifically the high priority packet is buffered to

another virtual channel for the high priority packet at the next router. When the router

switch finishes sending the high priority packet, the router restarts to send the low

priority packet. At this time, the real-time control code for the low priority packet that

indicates a restart of the low priority packet is sent to the next router to switch the

virtual channel correctly. Communication of the low priority packet restarts, so that

the low priority packet is sent and buffered to the reserved virtual channel for the low

priority packet at the next router.

Figure 5 A prioritized router

4. Implementation

We have implemented the proposed SpaceWire router switch in the Spartan3e FPGA

on the D-RMTP I (Dependable Responsive Multithreaded Processor I) SiP (System-

in-Package) as shown in Figure 6. The D-RMTP I SiP, which size is 3x3cm,

integrates the D-RMTP I, four DDR SDRAMs, two flash memory chips, Ethernet phy,

an FPGA (Spartan3e), etc. The D-RMTP I, which size is 10 x 10mm, is a SoC

(System-on-Chip) for distributed real-time control, which integrates a real-time

processing core (RMT PU: 8-way prioritized SMT with 2D vector units), SRAM,

DDR SDRAM IF, PCI-X, SPI, IEEE1394, Ethernet, PWMs, encoders, UART, etc

into an ASIC chip as shown in Figure7. All D-RMTP I functions except the

SpaceWire router switch are integrated into the D-RMTP I chip. The FPGA

(Spartan3e XC3S500E) is exclusively used for the SpaceWire router switch, so that

the protocol of the real-time SpaceWire can be changed easily.

SpaceWire Networks and Protocols

352

Figure 6 Photo of D-RMTP I SiP

Figure 7 Block diagram of D-RMTP I SiP

5. Evaluation

 We implemented the SpaceWire router switch written by Verilog HDL on the

FPGA. We evaluated the SpaceWire network by RTL simulation using NC-Verilog.

Figure 8 shows a network topology for the evaluation. Each node generates 64-byte

packets, which destination addresses are changed at random, under random uniform

traffic. The average latency of packets and the maximum latency of packets were

measured, while the network utilization was changed.

A SpaceWire Extension For Distributed Real-Time Systems

353

N1

Router
1

Router
1

Router
4

Router
3

Router
2

N2 N3 N4 N6N5 N7 N8 N9

Figure 8 Network topology

Figure 9 shows a basic preliminary performance of the proposed SpaceWire network,

which shows a network latency without priority. While the network utilization

becomes higher, the average latency of a packet does not increase so much, but the

maximum latency of a packet increases.

Figure 9 Network latency (base line)

6. Conclusion and future work

We proposed a real-time extension scheme for SpaceWire. We designed and

implemented a packet overtaking function for real-time SpaceWiare networks. We

designed and implemented the proposed SpaceWire router switch on the D-RMTP I

SiP for parallel/distributed real-time control. We evaluated the basic performance of

the proposed SpaceWire network. Now we are going to measure the real-time

performance of the proposed real-time SpaceWire network, including the maximum

latency and the average latency of each priority packet by RTL simulation. We will

also measure them by using several D-RMTP I SiPs connected by the proposed

SpaceWire network.

SpaceWire Networks and Protocols

354

7. Acknowledgement

This research was supported by JST, CREST. This work was also supported in part

by Grant in Aid for the Global Center of Excellence Program for "Center for

Education and Research of Symbiotic, Safe and Secure System Design" from the

Ministry of Education, Culture, Sport, and Technology in Japan.

8. References

1. ECSS, “ECSS-E-ST-50-12C, SpaceWire-links, nodes, routers and networks”.

2. Christian Fraboul, Thomas Ferrandiz, Fabrice Frances, “A method of computation

for worstcase delay analysis on SpaceWire networks”, IEEE Symposium on

Industrial Embedded Systems, Switzerland, July 8-10, 2009.

3. Nobuyuki Yamasaki, “Responsive Multithreaded Processor for Distributed Real-

Time Systems”, Journal of Robotics and Mechatronics, 2005.

4. Liu, C.and Layland, J, “Scheduling algorithms for multiprogramming in a hard

real-time environment”, Journal of the ACM, Vol.20, pp.46-61, 1973

5. Nobuyuki Yamasaki, “Responsive Link for Distributed Real-Time Processing”

The 10th International Workshop on Innovative Architecture for Future

Generation High-Performance Processors and Systems, pp. 20-29, January, 2007.

6. Shinpei Kato, Yuji Fujita and Nobuyuki Yamasaki, “Periodic and Aperiodic

Communication Techniques for Responsive Link”, 15
th

 IEEE International

Conference on Embedded and Real-Time Computing Systems and Applications,

pp135-142, August 24-26, 2009.

7. Yuji Fujita, Shinpei Kato and Nobuyuki Yamasaki, “Real-Time Communication

and Admission Control over Responsive Link”, The IASTED International

Conference on Parallel and Distributed Computing and Networks, pp. 131-138,

Innsbruck, Austria, February 12-14, 2008.

A SpaceWire Extension For Distributed Real-Time Systems

355

