
FORMAL VERIFICATION FOR SPACEWIRE LINK INTERFACE USING

MODEL CHECKING

Session: SpaceWire Test and Verification (Poster)

Long Paper

Zhiquan Dai

College of Information Engineering, Capital Normal University, Beijing, China

Limin Tao

Beijing Engineering Research Center of High Reliable Embedded System

Beijing, China, 100048

Liya Liu

Dept. of Electrical and Computer Engineering, Concordia University

1455 de Maisonneuve W., Montreal, Quebec, H3H 1M8, Canada

Yong Guan, Weigong Zhang, Yuanyuan Shang, ShengZhen Jin

College of Information Engineering, Capital Normal University, Beijing, China

E-mail: guanyong@mail.cnu.edu.cn, woyun_23@163.com, liy_liu@ece.concordia.ca,
zwg771@yahoo.com, syy@bao.ac.cn

ABSTRACT

The design of the SpaceWire based satellite onboard system circuits was a part of the

job in the development of Space Solar Telescope (SST) project, which has been

completed by National Astronomical Observatories, Chinese Academic of Sciences.

In order to prove the circuit was faithfully implements the SpaceWire protocol’s

specification, formal verification techniques were applied during the process of

development of the circuits and automated model checking approach was employed.

The implementation designed as VHDL models on the FPGA for SpaceWire link

interface circuit under investigation has an extension state (Error Analysis) in the state

diagram providing link initialization, normal operation and error recovery services

between transmitter and receiver on exchange level. Some properties were checked

successfully on the original model by using Cadence SMV tool and some properties

were verified to false. The results of the verification showed we have to update the

design according to the counterexamples to guarantee the circuit design implemented

on FPGA is reliable and can be integrated in the SST project.

Formal Verification for SpaceWire Link Interface Using Model Checking

185

mailto:guanyong@mail.cnu.edu.cn
mailto:zwg771@yahoo.com

1 INTRODUCTION

The correctness of design is one of the key problems to large-scale complex digital

system design, namely, design verification. Unfortunately, the complexity of the

verification exponentially increases with the increasing scale of chip. Particularly, as

complex the state of the art is, the cost of trial-produce is quite expensive. Safety is

the first place for many very important systems, for instance, the railway signal,

nuclear power station, aerospace, national security and large communication system

[1]. Any mistake of design possibly causes huge economic losses or catastrophic

consequences as personnel casualties. The design of the SpaceWire based satellite

onboard system circuits was a part of the job in the development of Space Solar

Telescope (SST) project, which has been completed by National Astronomical

Observatories, Chinese Academic of Sciences. In order to prove the circuit designed

for the highly reliable communication based on SpaceWire protocol was faithfully

implements the SpaceWire protocol's specification, this study aimed to verify the

SpaceWire link interface, which was one of the important elements of the SpaceWire.

Formal verification techniques were applied during the process of development of the

circuits and automated model checking approach was employed.

Techniques for automatic formal verification of finite state transition systems have

developed in the last 30 years to the point where major chip design companies are

beginning to integrate them in their normal quality assurance process. The most

widely use of these methods is called Model Checking [9]. In model checking, the

design to be verified is modelled as a finite state machine, and the specification is

formalized by writing temporal logic properties. The reachable states of the design are

then traversed in order to verify the properties. In case that the property fails, a

counter example is generated in the form of a sequence of states [7]. In general,

properties are classified to ''safety'' and ''liveness'' properties. The former declares

what should not happen or what should always happen; the latter declares what should

eventually happen. Specification is a process to briefly express the design system and

its properties with formal language. Formal specification description language has

strict syntax and semantics, which are used to express the functional behavior of the

system, such as timing characteristics or internal structure.

The main fault of traditional testing and simulation verification is that they are

incomplete. In another words, they can only prove that the design has error but can

not guarantee the design has no error. So, they are often suitable to find the vast or

obvious errors in the initial verification, but not to find complex and subtle errors [1].

The main advantage of the formal verification is completeness. Through model

checking, a method of the formal verification, we can find complex or subtle design

mistakes which other methods cannot find. So, model checking is an effective way of

the computer system design verification.

Poster Presentations

186

2 APPROACH

2.1 VERIFICATION FLOW

The overall flow of our approach is depicted in Figure1. The verification flow is also

applicable for other classes of circuit verified by model checking methods.

Requirement/
Protocal

Hardware RTL
Design

Properties/
Assertions

Formal Model
(Kripke Structure)

Model
Checker

True
Counter

Examples

Update
RTL Design

V
e

rificatio
n

 Flo
w

Figure1. Formal Verification Flow

The inputs to the process are the RTL description of the circuit, a formal specification

(possibly comprising many properties/assertions). We elaborate on the latter point, for

Properties/Assertions of SpaceWire control, in Section 3.2. The formal SpecaWire

control model is automatically compiled into a finite state machine [11].

The RTL is translated into a formal model of the circuit, either manually or using

automated tools. For the work in this paper, this is a description in the input language

of a model checker. (The model checker Cadence SMV [2] includes an automated

translator from Verilog to its input format.) However, in general it would depend on

the formal verification (FV) tool that is used. If the verification result is false, then

update the RTL design according to the counterexamples generated by the model

checker automatically.

2.2 FORMAL MODEL

The hardware engineer’s design is usually some sort of a finite automaton.

Independent of the concrete design language, this finite automaton can be represented

by a kripke structure, which is the standard representation of models in the model

checking literature [9]. The kripke structure is a quintuple K=(S, S0, R, AP, L), where

S is the finite state set of all the Boolean state variables {s1, s2 … sn}, S0 ⊆ S,

denoting the set of initial states in which the circuit can begin operation, R is the

transition relation of the system defining how the system evolves over time, AP is the

set of all the atomic proposition and its negative proposition, and L is the marking

function which maps the state s ∈ S into the true atomic proposition set of S [1]. We

can also regard K as a marked directed graph with a root, S is the vertex set of the

graph, R is the edge set of the graph, L is marking function of the vertex, and the root

is s0.

Formal Verification for SpaceWire Link Interface Using Model Checking

187

Given an RTL-level circuit designed with hardware description language, for example

Verilog, a formal model will be created automatically by the X-HDL tool as

mentioned above [10]. Timing-related details in the RTL are modelled using

non-determinism, so that the resulting formal model exhibits a superset of the actual

system behaviours. Any verification performed on the formal model will then be

faithful with the specification.

3 SPACEWIRE CONTROL MODULE

SpaceWire[8] is a network for space applications composed of nodes and routers

interconnected through bi-directional high speed data links. According to the

SpaceWire website hosted by the ESA, it has been used in missions of the ESA as

well as space agencies NASA and JAXA. The SpaceWire standard [8] describes 6

protocol levels: physical, signal, character, exchange, packet, and network. In this

paper, we concern with the exchange level that defines the protocol for link

initialization, flow control, and link error detection and recovery (similar to the more

widely known Transmission Control Protocol, TCP). Our main case study is the

SpaceWire control module of a node in the SpaceWire network, which is

implemented by our group in VHDL description language. Unfortunately, as VHDL

is not the required input language of any model checking tool available to us at this

moment, the design is translated from VHDL into Verilog by X-HDL [10]. With aid

of this tool, code in Verilog was automatically translated into the input code with the

acceptable language for the Cadence SMV model checker. In the mean time, English

language specifications from the standard document [8] were translated into formal

specifications in linear temporal logic and inserted into the SMV file as assertions to

be checked [3].

3.1 MODEL

A SpaceWire end node comprises three modules: a transmitter (TX), a receiver (RX),

and a state machine that sends control signals to them (FSM). We abstracted the

control module code from our whole design. Generating a SMV model from Verilog

involved straightforward transition for the most part, retaining the control structure,

and only abstracting away some data and timing in the Cadence SMV checking tool

[2]. FSM module indicating how state was abstracted to be the SMV model is briefly

described the following part [4]. Further details may be found in the standard

document [8].

The FSM controls the overall operation of the end node. Its operation is shown in

Figure2. The sequence of state ErrorReset, ErrorWait, and Ready provide a

mechanism of initializing the SpaceWire node, either coming from a whole system

reset or triggered by an error. During this sequence of operation, RX is enabled to

receive, but TX is prohibited from sending. In the Started state, TX can send NULL

signals to the other end, to establish a connection. Next, the FSM enters the

Connecting state where TX is enabled to send flow control tokens (FCTs). When RX

Poster Presentations

188

receives FCTs, it indicates that the other end has space in its receive buffer for data.

The Run state is the state for normal operation where packets flow freely in both

directions across the link. The node remains in the Run state until an error occurs or

until the link is disabled [8]. An ErrAnalysis_DataSave state was added in order to

improve the error analysis and process ability. When an error occurs or the link is

disabled in the run state, FSM enter into ErrAnalysis_DataSave state. In the same

time, FSM save and analyze the error and the data. If the data has been saved and the

error has been read, then the FSM enter into ErrorReset state, or still in the

ErrAnalysis_DataSave state.

Run

Send Time-Codes/
FCTs/N-Chars/NULLs

Enable Rx

Error Wait

Reset Tx
Enable Rx

Error Reset

Reset Tx
Reset Rx

Started

Send NULLs
Enable Rx

Connecting

Send FCTs/NULLs
Enable Rx

Ready

Reset Tx
Enable Rx

RxErr OR

got FCT OR

got N-Char OR

got Time-Code

RxErr OR

got FCT OR

got N-Char OR

got Time-Code OR

after 12.8 μ s

RxErr OR

got FCT OR

got N-Char OR

got Time-Code

Reset

After 6.4 μ s

After 12.8 μ s

[Link Enabled]

RxErr OR

got N-Char OR

got Time-Code OR

after 12.8 μ s

RxErr OR

Credit Error OR

[Link Disabled]

ErrAnalysis_DataSave

Reset Tx
Enable Rx

gotFCT

FIFO_Empty AND

ErrorReadDone

gotNULL

Figure2. SpaceWire Control Module State Graph

The end nodes communicate over a channel that was modelled in SMV to be capable

of dropping or creating parity errors in both control and data packets. (Appropriate

''fairness'' constraints [6] were imposed on the channel to ensure that a packet would

eventually get to its destination, even if it is dropped several times.)

3.2 FORMAL SPECIFICATIONS

25 SMV assertions were added in linear temporal logic corresponding to the

specification written in nature language in the protocol [8]. Temporal logic formulas

presented as formulas in ordinary Boolean logic, except that true value of a formula in

temporal logic is a function of time. Some new operators are added to the traditional

Boolean operators ''and'', ''or'', ''not'' and ''implies'', in order to specify relationships in

time. The new operators are termed as tense operator consists of G (global), F (future),

X (next) and U (until). G p means that p will keep true all the times in the future and is

Formal Verification for SpaceWire Link Interface Using Model Checking

189

read as ''eventually p''. The formula F p express p must hold true at some time in the

future and is read as ''eventually p''. In addition, we have the ''until'' operator and the

''next time'' operator. The formula X p means that p will be true at the next time and is

read as ''next p''. The formula p U q means that q is eventually true, and until then, p

must always be true and is read as ''p until q'' [3].

No Reference in[9] Assertion

1 Sec. 8.5.2.2(c) assert G(!Reset & After64 &SpacewireControllerCurrentState

= 0 -> X(SpacewireControllerCurrentState = 1));

--When the reset signal is de-asserted the ErrorReset state

shall be left unconditionally after a delay of 6,4 μs (nominal)

and the state machine shall move to the ErrorWait state.

2 Sec. 8.5.2.3(b) assert G(SpacewireControllerCurrentState = 1 ->

X(!RX_Reset & TX_Reset));

-- In the ErrorWait state the receiver shall be enabled and the

transmitter shall be reset.

3 Sec. 8.5.2.4(a) assert G(X(SpacewireControllerCurrentState = 2)

->(SpacewireControllerCurrentState = 1 |

SpacewireControllerCurrentState = 2));

--The Ready state shall be entered only from the ErrorWait

state.

4 Sec. 8.5.2.5(g) assert G(SpacewireControllerCurrentState = 3 &

(DisconnectionError | FirstNULLreceived_internal &

(RX_Error | RX_GotSomethingWrong)) ->

X(SpacewireControllerCurrentState = 0));

--If, while in the Started state, a disconnection error is

detected, or if after the gotNULL condition is set, a parity

error or escape error occurs, or any character other than a

NULL is received, then the state machine shall move to the

ErrorReset state.

Table1. Selected Formal Specification

Table1 lists the representative assertions. Specifications are classified into four

categories, and each category is represented in the table. The first set of specifications

is on the FSM operation, indicating how and when the system can move between

FSM states, as shown in Figure2. The second set is related on the cases whether the

transmitter and receiver are enabled or not. The third presents the situations that

current state is transferred from itself or the previous state. The fourth is based on the

interaction between FSM, TX, and RX, exemplified by row 4 in the table that deals

with error handling. Our formal specification is as comprehensive as the

corresponding English language specifications in the standard documents.

3.3 RESULTS

An SMV model with 333 lines code (including assertions) was generated based on a

design with 511 lines code Verilog language. According to the SpaceWire protocol,

Poster Presentations

190

the formal specifications are created, the state transition properties indicating that the

current state is from itself or the previous state is verified to be true. The error

handling properties are verified to be false. For instance, the assertion, indicating that

if any error occurs, the ErrorWait state will move into the ErrorReset state in the

SpaceWire standard document section 8.5.2.3 (e), is verified to be false. The

counterexample of it shows that the error occurs, but the FSM do not move into the

ErrorReset state. It might be the result of the case that our assertion is not stated as the

specification of SpaceWire protocol or the RTL designed by our group really has

some error. We will continue to consummate our formal verification and update our

RTL design according to the verification results.

4 CONCLUSIONS AND FUTURE WORK

The translation from VHDL to SMV is automatically. Some properties of SpaceWire

control module were verified successfully, and the remaining properties will be

verified in the future. Although the system of assertions is quite comfortable, we have

to study the informal descriptions of parts of the design and often formulate our own

assertions to verify the design, because hardware designers are often not aware of all

presumptions they use to believe that their source codes are correct. Although the

model checking verification is complete, it is easy to generate the state space

combination explosion problem. Users of model checking tools typically consider it a

compliment to the traditional methods of testing and simulation, and not as an

alternative.

ACKNOWLEDGMENTS

We appreciate Kenneth L. McMillan for help with Cadence SMV. And we would like

to acknowledge our group for providing the SpaceWire RTL design and Maning Wan

for helping us with understanding the SpaceWire protocol. This research was

supported in part by the Space Solar Telescope (SST) project.

REFERENCES

1. Han Jungang, Du Huiming, “Digital hardware formal verification”, Peking

University press, 2001.

2. Cadence SMV model checker, http://www.kenmcmil.com/smv.html.

3. K.L.McMillan, “Getting started with SMV”, SMV Reference Manual, Cadence

Berkeley Labs, Berkeley, 1999.

4. K.L.McMillan, “The SMV language”, SMV Reference Manual, Cadence

Berkeley Labs, Berkeley, 1999.

5. K.L.McMillan, “The Model Checking System” SMV Reference Manual, Cadence

Berkeley Labs, Berkeley, 2002.

Formal Verification for SpaceWire Link Interface Using Model Checking

191

http://www.kenmcmil.com/smv.html

6. K.L.McMillan, “Symbolic Model Checking”, Kluwer Academic Publishers, 1992.

7. E. M. Clarke, O. Grumberg, D. A. Peled, “Model Checking”, MIT Press, 2000.

8. European Cooperation for Space Standardization, “Space engineering. SpaceWire

- links, nodes, routers, and networks”(ECSS-E-50-12A),

http://www.ecss.nl/forums/ecss/dispatch.cgi/standards/showFile/100302/d200907

22143301/No/ECSS-E-50-12A(24January2003).pdf, 2003.

9. Sanjit A. Seshia, Wenchao Li, Subhasish Mitra. “Verification-guided soft error

resilience”, Design, Automation, and Test in Europe, 2007, Pages: 1442 – 1447.

10. Tomáš Kratochvíla, Vojtěch Řehák, Pavel Šimeček, “Verification of COMBO6

VHDL Design”, CESNET, 2003.

11. Tahar, “Temporal Logics and Model Checking”, http://users.encs.concordia.ca

/~tahar/coen7501/notes/3-mc-02.05.pdf.

Poster Presentations

192

http://www.ecss.nl/forums/ecss/dispatch.cgi/standards/showFile/100302/d20090722143301/No/ECSS-E-50-12A(24January2003).pdf
http://www.ecss.nl/forums/ecss/dispatch.cgi/standards/showFile/100302/d20090722143301/No/ECSS-E-50-12A(24January2003).pdf
http://portal.acm.org/author_page.cfm?id=81100358245&coll=GUIDE&dl=GUIDE&trk=0&CFID=82601969&CFTOKEN=82890203
http://portal.acm.org/author_page.cfm?id=81331497991&coll=GUIDE&dl=GUIDE&trk=0&CFID=82601969&CFTOKEN=82890203
http://portal.acm.org/author_page.cfm?id=81339517980&coll=GUIDE&dl=GUIDE&trk=0&CFID=82601969&CFTOKEN=82890203
http://users.encs.concordia.ca/

