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ABSTRACT 

The design of the SpaceWire based satellite onboard system circuits was a part of the 

job in the development of Space Solar Telescope (SST) project, which has been 

completed by National Astronomical Observatories, Chinese Academic of Sciences. 

In order to prove the circuit was faithfully implements the SpaceWire protocol’s 

specification, formal verification techniques were applied during the process of 

development of the circuits and automated model checking approach was employed. 

The implementation designed as VHDL models on the FPGA for SpaceWire link 

interface circuit under investigation has an extension state (Error Analysis) in the state 

diagram providing link initialization, normal operation and error recovery services 

between transmitter and receiver on exchange level. Some properties were checked 

successfully on the original model by using Cadence SMV tool and some properties 

were verified to false. The results of the verification showed we have to update the 

design according to the counterexamples to guarantee the circuit design implemented 

on FPGA is reliable and can be integrated in the SST project. 
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1 INTRODUCTION 

The correctness of design is one of the key problems to large-scale complex digital 

system design, namely, design verification. Unfortunately, the complexity of the 

verification exponentially increases with the increasing scale of chip. Particularly, as 

complex the state of the art is, the cost of trial-produce is quite expensive. Safety is 

the first place for many very important systems, for instance, the railway signal, 

nuclear power station, aerospace, national security and large communication system 

[1]. Any mistake of design possibly causes huge economic losses or catastrophic 

consequences as personnel casualties. The design of the SpaceWire based satellite 

onboard system circuits was a part of the job in the development of Space Solar 

Telescope (SST) project, which has been completed by National Astronomical 

Observatories, Chinese Academic of Sciences. In order to prove the circuit designed 

for the highly reliable communication based on SpaceWire protocol was faithfully 

implements the SpaceWire protocol's specification, this study aimed to verify the 

SpaceWire link interface, which was one of the important elements of the SpaceWire. 

Formal verification techniques were applied during the process of development of the 

circuits and automated model checking approach was employed. 

Techniques for automatic formal verification of finite state transition systems have 

developed in the last 30 years to the point where major chip design companies are 

beginning to integrate them in their normal quality assurance process. The most 

widely use of these methods is called Model Checking [9]. In model checking, the 

design to be verified is modelled as a finite state machine, and the specification is 

formalized by writing temporal logic properties. The reachable states of the design are 

then traversed in order to verify the properties. In case that the property fails, a 

counter example is generated in the form of a sequence of states [7]. In general, 

properties are classified to ''safety'' and ''liveness'' properties. The former declares 

what should not happen or what should always happen; the latter declares what should 

eventually happen. Specification is a process to briefly express the design system and 

its properties with formal language. Formal specification description language has 

strict syntax and semantics, which are used to express the functional behavior of the 

system, such as timing characteristics or internal structure. 

The main fault of traditional testing and simulation verification is that they are 

incomplete. In another words, they can only prove that the design has error but can 

not guarantee the design has no error. So, they are often suitable to find the vast or 

obvious errors in the initial verification, but not to find complex and subtle errors [1]. 

The main advantage of the formal verification is completeness. Through model 

checking, a method of the formal verification, we can find complex or subtle design 

mistakes which other methods cannot find. So, model checking is an effective way of 

the computer system design verification. 
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2 APPROACH 

2.1 VERIFICATION FLOW 

The overall flow of our approach is depicted in Figure1. The verification flow is also 

applicable for other classes of circuit verified by model checking methods. 
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Figure1. Formal Verification Flow 

The inputs to the process are the RTL description of the circuit, a formal specification 

(possibly comprising many properties/assertions). We elaborate on the latter point, for 

Properties/Assertions of SpaceWire control, in Section 3.2. The formal SpecaWire 

control model is automatically compiled into a finite state machine [11]. 

The RTL is translated into a formal model of the circuit, either manually or using 

automated tools. For the work in this paper, this is a description in the input language 

of a model checker. (The model checker Cadence SMV [2] includes an automated 

translator from Verilog to its input format.) However, in general it would depend on 

the formal verification (FV) tool that is used. If the verification result is false, then 

update the RTL design according to the counterexamples generated by the model 

checker automatically. 

2.2 FORMAL MODEL 

The hardware engineer’s design is usually some sort of a finite automaton. 

Independent of the concrete design language, this finite automaton can be represented 

by a kripke structure, which is the standard representation of models in the model 

checking literature [9]. The kripke structure is a quintuple K=(S, S0, R, AP, L), where 

S is the finite state set of all the Boolean state variables {s1, s2 … sn}, S0  ⊆ S, 

denoting the set of initial states in which the circuit can begin operation, R is the 

transition relation of the system defining how the system evolves over time, AP is the 

set of all the atomic proposition and its negative proposition, and L is the marking 

function which maps the state s ∈ S into the true atomic proposition set of S [1]. We 

can also regard K as a marked directed graph with a root, S is the vertex set of the 

graph, R is the edge set of the graph, L is marking function of the vertex, and the root 

is s0. 
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Given an RTL-level circuit designed with hardware description language, for example 

Verilog, a formal model will be created automatically by the X-HDL tool as 

mentioned above [10]. Timing-related details in the RTL are modelled using 

non-determinism, so that the resulting formal model exhibits a superset of the actual 

system behaviours. Any verification performed on the formal model will then be 

faithful with the specification. 

3 SPACEWIRE CONTROL MODULE 

SpaceWire[8] is a network for space applications composed of nodes and routers 

interconnected through bi-directional high speed data links. According to the 

SpaceWire website hosted by the ESA, it has been used in missions of the ESA as 

well as space agencies NASA and JAXA. The SpaceWire standard [8] describes 6 

protocol levels: physical, signal, character, exchange, packet, and network. In this 

paper, we concern with the exchange level that defines the protocol for link 

initialization, flow control, and link error detection and recovery (similar to the more 

widely known Transmission Control Protocol, TCP). Our main case study is the 

SpaceWire control module of a node in the SpaceWire network, which is 

implemented by our group in VHDL description language. Unfortunately, as VHDL 

is not the required input language of any model checking tool available to us at this 

moment, the design is translated from VHDL into Verilog by X-HDL [10]. With aid 

of this tool, code in Verilog was automatically translated into the input code with the 

acceptable language for the Cadence SMV model checker. In the mean time, English 

language specifications from the standard document [8] were translated into formal 

specifications in linear temporal logic and inserted into the SMV file as assertions to 

be checked [3]. 

3.1 MODEL 

A SpaceWire end node comprises three modules: a transmitter (TX), a receiver (RX), 

and a state machine that sends control signals to them (FSM). We abstracted the 

control module code from our whole design. Generating a SMV model from Verilog 

involved straightforward transition for the most part, retaining the control structure, 

and only abstracting away some data and timing in the Cadence SMV checking tool 

[2]. FSM module indicating how state was abstracted to be the SMV model is briefly 

described the following part [4]. Further details may be found in the standard 

document [8]. 

The FSM controls the overall operation of the end node. Its operation is shown in 

Figure2. The sequence of state ErrorReset, ErrorWait, and Ready provide a 

mechanism of initializing the SpaceWire node, either coming from a whole system 

reset or triggered by an error. During this sequence of operation, RX is enabled to 

receive, but TX is prohibited from sending. In the Started state, TX can send NULL 

signals to the other end, to establish a connection. Next, the FSM enters the 

Connecting state where TX is enabled to send flow control tokens (FCTs). When RX 
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receives FCTs, it indicates that the other end has space in its receive buffer for data. 

The Run state is the state for normal operation where packets flow freely in both 

directions across the link. The node remains in the Run state until an error occurs or 

until the link is disabled [8]. An ErrAnalysis_DataSave state was added in order to 

improve the error analysis and process ability. When an error occurs or the link is 

disabled in the run state, FSM enter into ErrAnalysis_DataSave state. In the same 

time, FSM save and analyze the error and the data. If the data has been saved and the 

error has been read, then the FSM enter into ErrorReset state, or still in the 

ErrAnalysis_DataSave state. 
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Figure2. SpaceWire Control Module State Graph 

The end nodes communicate over a channel that was modelled in SMV to be capable 

of dropping or creating parity errors in both control and data packets. (Appropriate 

''fairness'' constraints [6] were imposed on the channel to ensure that a packet would 

eventually get to its destination, even if it is dropped several times.) 

3.2 FORMAL SPECIFICATIONS 

25 SMV assertions were added in linear temporal logic corresponding to the 

specification written in nature language in the protocol [8]. Temporal logic formulas 

presented as formulas in ordinary Boolean logic, except that true value of a formula in 

temporal logic is a function of time. Some new operators are added to the traditional 

Boolean operators ''and'', ''or'', ''not'' and ''implies'', in order to specify relationships in 

time. The new operators are termed as tense operator consists of G (global), F (future), 

X (next) and U (until). G p means that p will keep true all the times in the future and is 
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read as ''eventually p''. The formula F p express p must hold true at some time in the 

future and is read as ''eventually p''. In addition, we have the ''until'' operator and the 

''next time'' operator. The formula X p means that p will be true at the next time and is 

read as ''next p''. The formula p U q means that q is eventually true, and until then, p 

must always be true and is read as ''p until q'' [3]. 

No Reference in[9] Assertion 

1  Sec. 8.5.2.2(c) assert G(!Reset & After64 &SpacewireControllerCurrentState 

= 0 -> X(SpacewireControllerCurrentState = 1)); 

--When the reset signal is de-asserted the ErrorReset state 

shall be left unconditionally after a delay of 6,4 μs (nominal) 

and the state machine shall move to the ErrorWait state. 

2 Sec. 8.5.2.3(b) assert G(SpacewireControllerCurrentState = 1 -> 

X(!RX_Reset & TX_Reset )); 

-- In the ErrorWait state the receiver shall be enabled and the 

transmitter shall be reset. 

3 Sec. 8.5.2.4(a) assert G(X(SpacewireControllerCurrentState = 2) 

->(SpacewireControllerCurrentState = 1 | 

SpacewireControllerCurrentState = 2)); 

--The Ready state shall be entered only from the ErrorWait 

state. 

4 Sec. 8.5.2.5(g) assert G(SpacewireControllerCurrentState = 3 & 

(DisconnectionError | FirstNULLreceived_internal & 

(RX_Error | RX_GotSomethingWrong)) -> 

X(SpacewireControllerCurrentState = 0)); 

--If, while in the Started state, a disconnection error is 

detected, or if after the gotNULL condition is set, a parity 

error or escape error occurs, or any character other than a 

NULL is received, then the state machine shall move to the 

ErrorReset state. 

Table1. Selected Formal Specification 

Table1 lists the representative assertions. Specifications are classified into four 

categories, and each category is represented in the table. The first set of specifications 

is on the FSM operation, indicating how and when the system can move between 

FSM states, as shown in Figure2. The second set is related on the cases whether the 

transmitter and receiver are enabled or not. The third presents the situations that 

current state is transferred from itself or the previous state. The fourth is based on the 

interaction between FSM, TX, and RX, exemplified by row 4 in the table that deals 

with error handling. Our formal specification is as comprehensive as the 

corresponding English language specifications in the standard documents.  

3.3 RESULTS 

An SMV model with 333 lines code (including assertions) was generated based on a 

design with 511 lines code Verilog language. According to the SpaceWire protocol, 
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the formal specifications are created, the state transition properties indicating that the 

current state is from itself or the previous state is verified to be true. The error 

handling properties are verified to be false. For instance, the assertion, indicating that 

if any error occurs, the ErrorWait state will move into the ErrorReset state in the 

SpaceWire standard document section 8.5.2.3 (e), is verified to be false. The 

counterexample of it shows that the error occurs, but the FSM do not move into the 

ErrorReset state. It might be the result of the case that our assertion is not stated as the 

specification of SpaceWire protocol or the RTL designed by our group really has 

some error. We will continue to consummate our formal verification and update our 

RTL design according to the verification results. 

4 CONCLUSIONS AND FUTURE WORK 

The translation from VHDL to SMV is automatically. Some properties of SpaceWire 

control module were verified successfully, and the remaining properties will be 

verified in the future. Although the system of assertions is quite comfortable, we have 

to study the informal descriptions of parts of the design and often formulate our own 

assertions to verify the design, because hardware designers are often not aware of all 

presumptions they use to believe that their source codes are correct. Although the 

model checking verification is complete, it is easy to generate the state space 

combination explosion problem. Users of model checking tools typically consider it a 

compliment to the traditional methods of testing and simulation, and not as an 

alternative. 
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