
Elastic Flow Control and Parallel Switch Design for SpaceWire

Router

Session: SpaceWire Networks and Protocols (Poster)

Long Paper

Chunjing MAO, Yong GUAN

College of Information Engineering, Capital Normal University, Beijing, 100048,
China/ Department of Computing, The Hong Kong Polytechnic University, Hung

Hom, Kowloon, Hong Kong, China

Zili SHAO

Department of Computing, The Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong, China

Jie Zhang

College of Information Science & Technology, Beijing University of Chemical
Technology, Beijing, 100029, China

E-mail: mcjing@163.net, gxy169@sina.com, cszlshao@comp.polyu.edu.hk,

jzhang@mail.buct.edu.cn

ABSTRACT

In a SpaceWire network, to connect equipments together, a SpaceWire router uses the

wormhole routing to deliver packets. However, in the wormhole routing, there

inherently exists the braking-problem that increases the average non-blocking latency.

In this paper, we propose an elastic flow control mechanism to solve this problem. In

addition, we propose a novel parallel switch architecture with pipelining to improve

the transmission speed and switching efficiency, and optimize its FPGAs

implementation. We implement our technique and test it in Xilinx FPGAs. The results

show that on average the non-blocking latency can be reduced to 245ns at 200MHz.

By using our elastic flow control, a long physical connection between two nodes can

be established without reducing the bandwidth utilization. With our pipelined parallel

switch architecture, the transmission speed can be enhanced to over 300Mbps and the

circuit scale can be reduced 50% compared with the original design in FPGAs

implementation.

1 WORMHOLE ROUTING

Wormhole routing is an effective solution for packet routing [1][2]. Each packet
contains a header which holds the destination node address. As soon as the header for a
packet is received, the router determines the output port to route the packet to by
checking the destination address. If the requested output port is free, the packet is
routed immediately to that output port. That output port is now marked as busy until
the last character of the packet has passed through the router – indicated by the end of
packet marker being detected by the router. Wormhole routing only cuts down on the
amount of buffering used within each router and the delay for packets deliver.

Elastic Flow Control and Parallel Switch Design for SpaceWire Router

259

mailto:mcjing@163.net
mailto:gxy169@sina.com
mailto:cszlshao@comp.polyu.edu.hk
mailto:jzhang@mail.buct.edu.cn

Compared to a store and forward technique, where an entire packet is first received and
stored before it is sent out of the router, NoC (Network on Chip) [32]

can be realized.

And delay of a single packet lowerT can be described as:

 chpsdchflower BLDBLT /)/((1)

fL is the length of each flit, sdD is the distance between source node and destination

node, chB is the bandwidth of the channel, and pL is the length of packet. If pf LL ,

the influence from sdD to lowerT can be ignored.

Wormhole routing [1] is illustrated in Figure 1 which shows a packet being sent from
one node to another through a routing switch (router). The header of the packet is
marked as black, while the rest of the packet is marked as grey. As soon as the router
receives the header, it checks the requested output port. If the output port is free, then
the router makes a connection between the input port and the output port. The packet
then flows through the router. When the end of packet (EOP or EEP) marker is
received by the switch, the router terminates the connection and frees the output port
for the next packet, which can come from any input ports.

Figure 1. Wormhole Routing

Using of blocking flow control mechanism in wormhole routing, there is an inherent
braking-problem [4][5]. When a header flip reaches the router, the flip has to wait until

next channel is free. Transmission time of packet from header flip to end flip is bT , and

it can be expressed as:

 sARBADb TMTTT (2)

ADT is coding time of address coder; ARBT is arbiter time, and ST is blocking signal

transmission time in router. Because all the data flips are transmitted with pipelining

mode, clocking time cT need to be greater than bT (see Equation 3). Otherwise, packet-

loss would happen.

 sARBADc TMTTT (3)

Latency built up in router is with millisecond. A signal transmission can be finished

with nanosecond, and clocking time is in millisecond. From Equation 3 we can see

Poster Presentations

260

that, working-frequency is limited by the braking-problem, and working-frequency is

one of the key factors to improve the transmission rate.

2 ELASTIC FLOW CONTROL

Based on analysis above, an elastic buffer is applied to solve the brake problem in
wormhole routing. Elastic flow control uses flip as the basic unit. In this paper, we
propose an elastic flow control mechanism to illustrate the idea of design elastic buffer.

Figure 2. Structure of Elastic Buffer

As is shown in Figure 2, the capacity of buffer is C , the upper boundary is Bh, and the

lower boundary is Bl. F is the number of bytes stored in a buffer, and 0F initially.

While outgoing transmission rate is equal to incoming transmission rate, F maintains

a fixed value. While outgoing transmission rate is lower than incoming transmission

rate, the value of F will gradually increase. When it reaches the upper boundary, a

flow control signal is built to notify the incoming node to stop transmission, and here

remain hB unused bytes in buffer for storing the incoming data in braking time. The

braking distances are determined by hB . By increasing hB , braking distances can be

prolonged.

Accordingly, the setting of lB is to prevent flow breaking while read-out from buffer.

While the value of F reaches nether boundary, flow control signal can be revoked to

notify incoming node continuing transmission. It needs time for low control signal to

be revoked from incoming node, and with lB , it can prevent flow breaking when low

control signal be revoked. Thus transmission would be more effective.

By using elastic flow control, address coder time ADT and arbiter time ARBT do not

need to be calculated, and delay can be reduced by paralleling data transmission and
channel switch. The flow control signal is built and revoked at the same time, which is

equal to blocking time BT . So cT should be:

 sBc TTT (4)

It is easy to build a flow control signal, which can be finished within several

nanoseconds. Compare with Equation 3 and Equation 4, braking-problem can be

solved with elastic flow control. Also, there can be a long physical connection

Elastic Flow Control and Parallel Switch Design for SpaceWire Router

261

between two nodes without reducing the bandwidth utilization by hB and lB in

synchronous mode.

3 PARALLEL SWITCH ARCHITECTURE

Normally, there are three steps for a packet passing from input port to output port in

SpaceWire router:

A. Reading header for the packet and sending the destination node address to routing

table

B. Finding destination node address in routing table and to decide the output port of

the packet

C. Sending the packet to the decided output port

There is a read/write competition when more than two input ports sending packet to

the same output port. This would trigger the arbitral mechanism in router. After

arbitration, the input port with higher priority can send its packet. That is, only one

input port can send packet at a certain time; others would sending packet sequentially

by arbitral result. Transmission efficiency of router would be confined by this serial

arbitration mode.

We design a pipeline based SpaceWire router to improve the transmission efficiency.

The objective is to design a pipeline based non-blocking parallel switch, as is shown

in Figure 3.

Figure 3. Illustration of Switch Matrix

Circuit of packet header detection and packet reorganizing can be very complex with

a large circuit scale in original SpaceWire router design. We propose a transaction

processing pipeline for packet header detection and packet reorganizing, which can

reduce the complexity of circuit design and power consumption, and improve the

reliability of SpaceWire router. The architecture of parallel switch pipelining is

illustrated in Figure 4. We realize this architecture with FPGAs, and experiment

Poster Presentations

262

results show that, by using transaction processing pipeline, the circuit scale can be

reduced about 50% compare to original design.

Figure 4. Architecture of Parallel Switch Pipelining

As illustrated in Figure 4, this architecture composes of K no-buffer crossbar

switches and M input sharing storage modules. There are V external interfaces for

each input/output sharing storage module, which connects to all crossbar switches.

There are M V VOQs (Virtual Output Queue) in each input sharing storage module,

which stores packets to different destination. V output queues in each output sharing

storage module store packets wait be sent. In each arbitration cycle, input port picks

up M queues from M V VOQs randomly, and submits scheduling requests to

switch. Switch services each queue by polling and feedbacks authority information to

input port by scheduling result. The first packet of VOQs that appointed by authority

information will pass switch to output queues, and it will be sent to external links after

message reorganization. Push-reverse mechanism can be adopted to avoid overflow in

output.

In case of multi-input sending packets to one output, we adopt pipeline technology for

multi-transmission by time-sharing operation. Also, routing table can copy to each

input port, and there is no need for arbitral mechanism. While a packet arrives in input

port, it decides the output port by finding in routing table by header of packet, and it

will be sent the packet. While multi-input transmission, it would assign a time-token

for each input port. Packet can be transmitted when time-token of this input port is

enabled, and transmission is stopped once time-token is disabled. All incoming

packets can follow this way. Assigning time-token can be controlled by routing

algorithm. The basic idea is to assign time-token to each input port alternately by

using pipeline, and routing algorithm can be optimized in some specific application. It

Elastic Flow Control and Parallel Switch Design for SpaceWire Router

263

would improve transmission performance in SpaceWire network, and accessing for

each input/output port can be achieved simultaneously.

4 EXPERIMENTS

We conduct experiments by building a platform with Xilinx FPGAs, which is shown

in Figure 5. The platform consists of two routers, and each router is connected with

several nodes. Each node includes the data source of video, image, audio, and

instructions. Each router connects with a PCI node, which is used to connect the host

PC. The host PC can observe and configure the router via PCI node.

Figure 5. Illustration of Experiment Platform

The experimental results show that on average the non-blocking latency can be

reduced to 245ns at 200MHz. By using our elastic flow control, a long physical

connection between two nodes can be established without reducing the bandwidth

utilization. With our pipelined parallel switch architecture, the transmission speed can

be enhanced to over 300Mbps and the circuit scale can be reduced 50% compared

with the original design in FPGAs implementation.

5 CONCLUSION

In this paper, we solve the braking-problem by using elastic flow control mechanism.

We proposed novel parallel switch architecture with pipelining to improve the

transmission speed and switching efficiency, and we optimize its FPGAs

implementation. The experimental results show that on average the non-blocking

latency can be reduced to 245ns at 200MHz, and transmission speed can be enhanced

to over 300Mbps. The circuit scale can be reduced 50% compared with the original

design in FPGAs implementation.

REFERENCES

1. “SpaceWire protocols‖, ECSS-E-ST-50-11C, July 2008

2. “SpaceWire standard - Links, nodes, routers and networks‖, ECSS-E-ST-50-12C,

31 July 2008

Poster Presentations

264

3. Ai Zhen. ―Design of Wormhole Routing Based on Black-bus,‖ Master Degree

Thesis of University of Electronic Science and Technology of China, 2007(5).

4. An Xuejun, Zhu Faming, Gao Wenxue, Wu Dongdong. ―The Design and

Implementation of the Elastic Buffer in Wormhole Routing Chips,‖ Computer

Engineering and Applications, 2002, 7.

5. Xiao Xiaoqiang, Jiang Yuqin, Jin Shiyao, He Hongjun. ―BWR—Buffered

Wormhole Routing Switching,‖ Chinese Journal of Computer, 2001, 24(1).

Elastic Flow Control and Parallel Switch Design for SpaceWire Router

265

