
NEW APPROACH AND TECHNIQUES
FOR TESTING AND DIAGNOSIS OF SPACEWIRE NETWORKS

Session: SpaceWire Test and Verification

Short Paper

Stéphane Davy, Jacky Rozmus, Matthieu Salanave,

SKYLAB Industries, 42 avenue du Général de Croutte, 31100 Toulouse, France

Frédéric Pinsard

DSM/IRFU, Bât 141, CEA Saclay, 91191 Gif sur Yvette Cedex, France

Mansour Talhaoui

Aerospace Services International Company, 3 rue du romarin, Taieb M’hiri, Tunis, Tunisia

E-mail: spacewire@skylab-corporate.com, pinsard@cea.fr, talhaouimansour@gmail.com

ABSTRACT
In this paper, we present a new testing approach and techniques for compliant
SpaceWire1 devices and networks. This approach is based on the emulation principle
by using both physical and virtual devices. The conducted work has been done with
the collaboration of CEA and Aerospace Services International Company.
Most of today’s remaining issues and bugs in relation to test and integration are
usually due to incompatible hardware, or simply, software misunderstandings between
distant engineering teams, a common situation in space projects. The idea here is to
introduce a new concept for emulating SpW networks based on physical equipments
and/or virtual nodes and routers. Each of them could be located either in the same
laboratory or at different locations around the globe. As a result, troubleshooting is
expected to be more efficient and can be performed at early stages of the
development, therefore ensuring successful flight modules.

After introducing the physical and virtual elements features which will act as SpW
nodes for the network, the paper will detail the complete traffiController4SpW software
suite and how its architecture and characteristics can speed up network dimensioning,
software testing and validation in a given heterogeneous SpaceWire topology. The
software can actually be very flexible, allowing substantial freedom of use, not just
for potential 4SpW products users but also for SpW users without hardware equipment
and theoretically for any type of SpW test equipment.

NETWORK PHYSICAL DEVICES
One main element of the test bench is the PCI4SpW product: a PCI board with four
SpW nodes, using CEA IP core. In addition to being able to transfer data with flexible
configuration for each port, it provides standard and high-resolution time-codes
capability. A SpW conformance testing feature is also present in the FPGA System on
Chip, providing means to test robustness of any IP core. The PCI driver which is
provided with the board can handle different data formats, depending on the project’s
performance and software constraints. Two main data transfer formats are available:

- A short format: one 9bit SpW characters is stored over a single 16bit word.
- SpaceWire Interpreted Protocol format (SIP):

o Data_8 format: limited to 256 values: one byte per SpW character.
o Data_32 format limited to FIFO size of hardware: 4 SpW characters

per 32bit word.

New Approach and Techniques For Testing and Diagnosis of SpaceWire Networks

49

Regarding memory capacity, the PCI board features a local and configurable 32K x
36bit SRAM memory dedicated to incoming data while a dedicated non-configurable
28KB of FPGA block-memory can be used for outgoing data. A PCI4SpW emulator has
been implemented in order to anticipate the board delivery during SKYLAB early
software prototyping, and can now act as a physical device emulator.
The other key element of the test bench is the smartCable4SpW product: a USB High-
Speed single SpW node miniaturized device, overmolded with a male microD9
connector. It can act as node-to-node analyzer as well, using a dedicated plug (spy
mode). It provides oscilloscope and logical analyzer capability, with possible
buffering into the main 512Mbit DDR SDRAM. In addition, a custom LVDS eye
diagram feature is available in the electronic device. The smartCable driver can
handle enough bandwidth for most of the projects’ constraints. During the smartCable
prototyping validation, a throughput of 32MBytes per second uni-directionally was
measured. SmartCable driver also provides implementation of hardware SIP format
conversion for better processing efficiency: dedicated RTL modules actually ensures
SIP to SpW decoding and SpW to SIP encoding in the smartCable System on Chip.
Using dedicated routines of the API, the smartCable device also provides:

- eye d iagrams for both incoming and outgoing Data+/- and Strobe+/-
differential lines. The Analog to Digital converter used for processing the
analog signals is a dual 11-bit ADC with a 900MHz bandwidth, for potential
LVDS measurements up to the highest standard transfer speeds. A low noise
multiplexing front-end ensures very low disturbances regarding SpaceWire
lines. The eye diagram is accessible in the API through direct picture format
and dedicated routine.

- a digital oscilloscope function, providing useful serial data debug information.
- an analyzer function (in spy mode only). The additional plug of the

smartCable (a female to female-female assembly which can be plugged to the
male connector) reconfigures the FPGA of the USB bridge into receiving-only
lines, providing a non-intrusive analyzer for two potential communicating
nodes of, for example, a given set of space equipments.

CompatibleCable4SpW products have been used with 10-meter Ethernet cables in
order to interconnect PCI devices at a transmit clock speed of up to 200MHz. A third
possible test equipment for the test bench, the PCI Express4SpW board, could not be
used for this set of testing because it was still under validation at the time of writing
this paper. However, data transfers from PCI Express to SpaceWire have been
successfully tested on the prototype model by CEA/IRFU. The test results for this
board are promising and the board is set to provide high-performance transfer,
especially because of the theoretical multi Gbps throughput of the PLX device
associated with the performances of a Virtex 4 device, all two consistent with more
demanding ground and space applications. A PCI Express4SpW emulator has been
developed in order to anticipate the board availability and can act as a physical device
emulator as well, as previously described for the PCI board.These three physical
devices can be managed by the traffiController4SpW software suite, in order to be
controlled and used as SpW nodes for transmitting and receiving data. RMAP, as
described in ECSS-E-ST-11C, can be associated to each of these physical nodes.

NETWORK VIRTUAL DEVICE
In addition to this set of hardware, traffiController4SpW is also capable of managing
virtual devices. These consist of the following elements, which use files for dump and
load of data:

SpaceWire Test and Verification

50

- virtual nod e: a SpW object-oriented element providing communication features,
not related to any particular hardware, but dealing with data to and from a text file.
Virtual nodes can communicate with real or emulated nodes from real or emulated
hardware. They can also be virtually connected to one virtual router port (see
hereafter).

- emulated smartCable, emulated PCI, emulated PCI Express devices: emulated
object-oriented elements providing features equivalent to the real hardware, with
degraded performances, also dealing with input and output files. These emulators
provide emulated nodes for the SpW network, with more faithful characteristics
and API methods regarding SKYLAB 4SpW products.

- virtual router, allowing SpW routing,
whose implementation is inspired
from the SpW 10x device, as
described in its User Manual2 and
which supports Group Adaptative
Routing. It can be configured with up
to 31 ports and can be controlled via
RMAP port number 0.

- virtual l ogical an alyzer, which can
be inserted between nodes of any kind
(physical, emulated, virtual) or router
ports, allowing data to be monitored
or stored for debugging purposes.
Four modes are available: step-by-
step, blocking buffer, non-blocking
buffer and continuous modes.

- IP tunnels, which can be used to
connect multiple API locally or
through an intranet/internet
network. These IP tunnel use a
peer to peer architecture.

Figure 1: virtual SpW network and IP tunnelling

TRAFFICONTROLLER4SPW ARCHITECTURE OVERVIEW

As previously described, the software suite enables space industry engineers to use network
physical devices and network virtual devices. Emulated and real nodes are accessed through
the Device Virtualization Service (DVS) layer, the lower layer of the traffiController4SpW
package. Virtual nodes are managed at API level, providing the rich set of communication
elements for network routing and analysis, with the capability to transfer data through multiple
tunnels. Additionally, Graphical User Interface (GUI) and console applications provide
intuitive interaction with lower layer services. Each of these nodes (virtual, emulated and real)
are accessed through DVS, whose architecture was inspired from the CCSDS SOIS PnP
spatial related architecture3. More detailed information on DVS, API and GUI
implementations is available online in the traffiController4SpW product datasheet.

SPACEWIRE NETWORKS TESTING AND DIAGNOSIS: TEST CASES
Using previously described software and hardware resources, we could setup a reconfigurable
emulated SpW network using multiple nodes potentially dispatched between Saclay (CEA),
Toulouse (Skylab) and Tunis (ASIC) geographical sites. Such a test bench gave us flexibility
to be able to configure sub-networks using virtual routers within the overall network. In the
next test cases, we consider such a testing configuration based on a local API 0 configuration
and a distant API 1 configuration, whose characteristics are described in Figures 3 and 4
below, with the related GUI screen copies. Note: ‘T[]’ stands for Tunnels in the related boxes.

New Approach and Techniques For Testing and Diagnosis of SpaceWire Networks

51

Figure 2 : API 0 configuration (local)

Figure 3 : API 1 configuration (distant)

These test bench configurations have been used to perform a few dozens of test scenarios
which are summarized in the following three categories, according to their complexity:

1. Direct connection between nodes, with or without RMAP capability
2. Connection through just one router: many tests have been run using: (a) logical or

physical addressing, (b) with or without RMAP, (c) router configuration packets
3. Connection through more than one router: same as above using intermediate routers

All these tests have been performed successfully using either a stand-alone configuration (API
0 and API running on the same PC) or a distributed configuration (API 0 and API running on
different networks). For each of these tests, error codes processing have been treated to be able
to handle bad commands, such as RMAP over SpW errors. The following are examples of test
cases that were carried out:

• Test 1
•

: Packet exchange between two remote nodes through a local and a remote router
Test 2

•
: Configuring a remote router

Test 3: Using the analyzer function in Blocking Buffer mode
Test1

Virtual Node 0 with ID 0x36 was selected to send various lengths and types of SpW data with
the following specific physical addresses header: 0x07 0x01 0x03. When routed by Router
0x00, data were sent through the API tunnel T[1] with ID 0x3A, arriving Port 5 of Router
0x01 API 1, routed to port[1], routed to port[3] of Router 0x00 API 1 finally reaching
emulated smartCable ID 3 of the API 1.

: The objective was to enable the transmission and reception of data between two remote
nodes through a local router and a remote router. The test case was to send data from the
output file of Virtual Node 0 of API 0 while receiving them in the input file of the emulated
smartCable of the API 1, located on anothercomputer.

Test 2: The goal was to setup a router register using a Write Single Address RMAP command.
The test case intended to configure Router 0x0 of API 0 from emulated smartCable 0.

As described on the left, a Write Single
Address RMAP command could be sent
from the Test Node window and checked
that it was performed correctly by viewing
the response in the Raw Data tab. The
content of the register located at address
0x20 of the router could be checked as
described in the following screen-copy.

SpaceWire Test and Verification

52

Test 3

To illustrate the functioning of the Blocking Buffer mode, we considered theses hex frames:
 Frame 1: 03 03 3d 20 55 01, 03 05 9f f2 54 4a f2 01

: The objective was to use the logical analyzer in Blocking Buffer mode, with a fixed
buffer size of 50 bytes. The two following possibilities were considered: sent data length less
than buffer size, then sent data length greater than buffer size: in this case, only the first
frames had been recovered during the first reading. The normal behavior was that during this
time, the next frame was on a pending state for the buffer release. All other sending attempts,
after the buffer was full, had been ignored.

Frame 2: 03 08 0d 40 6b 97 7c 8a 29 89 01, 03 08 f9 a3 04 90 a9 8b 00 e7 01
Frame 3: 03 08 37 7d fc 93 55 5c 9b 1d 01, 03 08 7a 3a 81 c6 93 10 4c 04 01
Frame 4: 03 08 14 db 64 c6 d1 db 81 24 01, 03 06 a8 5c f7 53 a5 3d 01

The test was divided into three sequences:
- First transaction: 1st and 2nd frames were sent, as logged on the left window below.
- Second transaction: 3rd frame was then sent, as logged on the right window.
- Third transaction: 4th frame was transmitted (no log shown).

The first two frames were normally analyzed (sent data length is 36 less than 50 bytes). The
second transaction was also analyzed because 3rd frame data was in pending mode. After
completion of the first transaction, the available space in the buffer was only (50 – 36 =) 14
bytes and since the 3rd frame contained 22 bytes, it was immediately placed in a pending state
to prevent data loss. The third transaction failed to be analyzed because the buffer was already
full and there was another pending frame. This behavior complies with Blocking Buffer mode.

CONCLUSION
The paper introduced in details basic elements in test bench, typical API configurations and
unitary/robustness tests and integration results of the test bench. The configuration aimed at
representing most of the realistic scenarios met by node-to-node SpW users, router users and
software developers. Most of these tests were conducted using representative emulators when
drivers for physical devices were not yet available. Unfortunately, due to late driver validation
for the smartCable and the unavailability of certain features like eye diagram or physical
logical analyzer, unitary tests for these features could not be done and performance tests for
this device with the traffiController could not be performed. However, in addition to the final
PCI and smartCable performance tests, additional measurements will be done in the coming
months with the new PCI Express equipment, giving complementary results to this approach.

REFERENCES
1 ECSS-E-ST-50-12C (Spacewire – Links, nodes, routers and networks)
2 UoD_SpW_10X_UserManual (SpW-10X SpaceWire Router - User Manual)
3 CCSDS-SOIS PnP on MILBUS (SOIS PnP Device and Service Discovery an example

of an adaptation model for MILBUS (On ECSS-E-50-13 Compliant System))

New Approach and Techniques For Testing and Diagnosis of SpaceWire Networks

53

