
PREPARING THE RASTA SOFTWARE FOR SPACEWIRE BACKPLANES

Session: SpaceWire Test and Verification
Short Paper

Daniel Hellström, Kristoffer Glembo, Sandi Habinc

Aeroflex Gaisler, Kungsgatan 12, SE-411 19 Göteborg, Sweden
daniel@gaisler.com, kristoffer@gaisler.com, sandi@gaisler.com

ABSTRACT
Replacing a Peripheral Component Interconnect (PCI) [3] backplane with a
SpaceWire [1] backplane would normally require major changes to hardware and
software. Today most PCI boards [6] used in the Reference Avionics System Test-
bench Activity (RASTA) already include SpaceWire interfaces and connectors on the
front panel. Aeroflex Gaisler has developed new abstract bus models for the Driver
Manager (DM) used previously in RASTA software [5] solutions, in order to simplify
porting of existing and newly developed RTEMS [4] software and improve code
reuse. This paper focuses on the software aspects of this development.

BACKGROUND
The RASTA facility is a test-bedding element of the avionics laboratory at ESA [6]. It
provides a representative environment for demonstration, evaluation and testing of
hardware, software and communication protocols that comprise on-board data
systems. RASTA has since grown in to a standardized platform [10] for on-board data
system developments and is made mandatory in many ESA activities. RASTA
consists of on-board computers, boards on-board I/O boards, TM/TC boards, etc.

Most of the RASTA hardware elements are implemented as system-on-chip designs
based on the AMBA [9] on-chip bus. The processor element is the LEON2 or LEON3
SPARC processors, residing on the AMBA on-chip bus. The processor is connected
via AMBA to one or more cores implementing various interfaces to buses such as PCI
and SpaceWire. Other elements, such as on-board I/O, are also based on the AMBA
on-chip bus, featuring interfaces such as PCI, SpaceWire, CAN, Mil-Std-1553B,
CCSDS/ECSS Telemetry (TM) &Telecommand (TC) etc. Thus each board comprises
an ASIC/FPGA that implements a system-on-chip based on the AMBA on-chip bus.

The PCI bus is currently used as the main interface between these boards. This paper
discusses the next step, where PCI is replaced with SpaceWire links for implementing
communication between boards. Communication between the processor and any other
resource can be done in several steps; firstly the processor accesses local resources
(i.e. cores) over the AMBA bus; secondly it accesses other units via PCI (current
baseline); thirdly it accesses other units via a SpaceWire link (discussed in the paper).

RMAP INITIATOR STACK
Throughout this paper all SpaceWire accesses involve Remote Memory Access
Protocol (RMAP) [2] commands sent to and responses received from RMAP targets.
The RMAP header and CRC are generated by an RMAP initiator stack developed by

Preparing the RASTA Software for SpaceWire Backplanes

83

Aeroflex Gaisler (CRC is generated by hardware where supported), received RMAP
responses are also processed by the stack. All RMAP commands are generated
according to the ECSS standard [2]. The initiator stack supports path addressing,
logical addressing and all defined transfer types. The initiator stack does not
implement the RMAP command/response transportation itself, but relies on an RMAP
stack driver, which in turn relies on SpaceWire packet transportation implemented by
an underlying SpaceWire driver. Layering the software makes it possible to support
SpaceWire cores from different vendors. The initiator stack does not require any
particular RMAP support in hardware since the RMAP commands are generated in
software. An RMAP stack driver has been implemented supporting the RTEMS
SpaceWire drivers for the GRLIB GRSPW/GRSPW2 IP cores [7][8].

DRIVER MANAGER

1.1 OVERVIEW

Device drivers rely on services such as Plug&Play scanning and IRQ (Interrupt
Request) management. The services are often implemented differently for different
bus types (e.g. AMBA or PCI), and as a result different Application Programming
Interfaces (API) are utilized when accessing these services. The Driver Manager
(DM), developed by Aeroflex Gaisler, in RTEMS provides services such as driver
loading (finding devices and appropriate drivers for them), IRQ handling etc. In an
attempt to provide a single API for the above mentioned services regardless of bus
type, the DM was created and abstract models for buses, devices, bus drivers and
device drivers were introduced. These concepts have been successfully implemented
and used in RASTA for on-chip AMBA buses, PCI buses and AMBA-over-PCI (i.e.
communication from local-AMBA bus over PCI to remote-AMBA bus).

This paper introduces two new bus models; the SpaceWire Network and AMBA-over-
RMAP (i.e. communication from local-AMBA bus over SpaceWire to remote-AMBA
bus). In order to support the new models the DM API has been extended with READ
and WRITE operations that can be used for communication over all bus types.

SpaceWire Test and Verification

84

1.2 SPACEWIRE NETWORK BUS MODEL

The SpaceWire Network model implements IRQ management and read and write
access to SpaceWire RMAP targets. The services are used by SpaceWire Node
drivers. The SpaceWire standard currently does not define Plug&Play, instead the
SpaceWire network configuration including all nodes are provided by the user. The
most important node configuration parameters are the SpaceWire destination address,
destination key and a virtual SpaceWire network IRQ number.

In each service request initiated by a SpaceWire Node driver, a pointer identifying the
particular node is given to the SpaceWire Network model. From the node
configuration the parameters used in lower layers can be determined. Read and write
access requests are for example implemented by adding SpaceWire destination
address/key and passing on the request to the RMAP initiator stack.

SpaceWire currently does not transport IRQ over the link. IRQ is optional and when
enabled are communicated as discrete level sensitive signals (requiring some sort of
GPIO hardware). The SpaceWire Network bus model works with virtual SpaceWire
IRQ numbers that can be resolved into a GPIO pin accessible by the processor. In
order to determine what caused the IRQ and to acknowledge the source, the RMAP
target must be accessed over the SpaceWire bus.

There are a number of reasons why an RMAP request cannot be performed in an
interrupt context, for example the time for completing an RMAP request may be too
long or the initiator stack itself may rely on interrupts. Instead of acknowledging the
IRQ source directly the GPIO interrupt is masked, stopping further IRQs from the
source, and a high-priority Interrupt Service Routine (ISR) task is awoken. The task is
responsible for calling all registered ISRs, the IRQ source will finally be
acknowledged and before suspending the ISR task will unmask the GPIO interrupt.

Figure 1: System overview

Preparing the RASTA Software for SpaceWire Backplanes

85

1.3 AMBA-OVER-RMAP BUS MODEL

The AMBA-over-RMAP bus model provides AMBA device drivers with IRQ
management and read and write access to AMBA cores over SpaceWire. The model
can be seen as a generic SpaceWire Node driver laying on top of the SpaceWire
Network model. By reusing existing AMBA bus layers and Plug&Play scanning, the
footprint is reduced, and the AMBA-over-RMAP bus model interface is similar to a
standard on-chip AMBA bus model, with a few additions.

The IRQ service is implemented on top of the SpaceWire Network IRQ service, the
constraints are thus propagated to AMBA-over-RMAP device drivers. ISRs are
executed in a high-priority task context in order to read and write the AMBA bus, this
differs from the on-chip AMBA bus model.

Critical areas, such as accessing registers, in combination with changing the state of
the software, are normally protected from an ISR by changing the Processor Interrupt
Level (PIL) to disable interrupts during the execution of the critical section. AMBA-
over-RMAP drivers cannot change the PIL to protect themselves, since a register
access over SpaceWire may require IRQ or may take substantial time to complete.
The same applies to the ISR itself that now executes in task context, it may be pre-
empted while accessing an AMBA register over SpaceWire. This problem is solved
by protecting critical areas with semaphores and introducing semaphores in the ISRs.

Even though register and memory accesses differ radically from the on-chip AMBA
bus model, the simple API provided minimizes the required changes. The driver
author needs not to worry about RMAP parameters as they are added in lower layers.
The major differences are that accesses can be pre-empted by other tasks while
waiting for response (depending on initiator stack, SpaceWire driver and scheduling
policy) and that accesses may fail due to SpaceWire communication errors.

FUTURE IMPROVEMENTS
The current implementation of the RMAP initiator stack and the SpaceWire driver
may create lock congestion when multiple tasks access the SpaceWire link
simultaneously. Setting up task scheduling may reduce the problem significantly,
however it cannot be avoided completely. Current software could be improved and
support for multiple DMA channels could be added for the GRSPW2 core to avoid
lock congestion.

Error handling could be improved in the bus models. RMAP read and write accesses
may fail, layers beneath the AMBA device driver involved could be made to handle
failures or re-execute requests automatically. With the bus model, error handling can
be isolated per SpaceWire network, per SpaceWire node or per AMBA device.

CONCLUSIONS
The SpaceWire backplane software is already used in a separate ECSS TM/TC FPGA
[12] project to set up, control and transport frames [11] over SpaceWire using RMAP.

The abstract bus models of the Driver Manager (DM) makes is possible to reuse and
maintain most of the interface towards an AMBA driver, regardless of bus location
(on-chip or over SpaceWire). Even though this paper describes a number of changes

SpaceWire Test and Verification

86

that AMBA drivers must undergo for conversion to an AMBA-over-RMAP bus model,

they are relatively few and easy and the driver structure can be maintained.

Nevertheless, most importantly the user interface remains the same.

Currently SpaceWire Plug&Play is the only missing link in order to go completely

Plug&Play, all the way from the controlling processor to a resource on the other side

of a SpaceWire network.

REFERENCES

1. SpaceWire - Links, Nodes, Routers and Networks, ECSS-E-ST-50-12C

2. SpaceWire - Remote memory access protocol, ECSS-E-ST-50-52C

3. PCI Local Bus Specification, Revision 2.3, 2002, www.pcisig.com

4. RTEMS, Real-Time Executive for Multiprocessor Systems, www.rtems.org

5. RASTA Interface Control Document (ICD) - Software, TEC-EDD/2007.32/GF

6. RASTA Interface Control Document (ICD) - Hardware, TEC-EDD/2007.31/GF

7. GRLIB IP Library User's Manual, Aeroflex Gaisler, www.gaisler.com

8. GRLIB IP Core User's Manual, Aeroflex Gaisler, www.gaisler.com

9. AMBA Specification, Rev 2.0, ARM IHI 0011A, Issue A, ARM Limited

10. S. Habinc, Crucial SpaceWire Elements in RASTA, ISC 2008

11. S. Habinc, CCSDS/ECSS Telemetry and Telecommand for RASTA, DASIA 2009

12. S. Habinc, ECSS TM-TC Component with SpaceWire RMAP Interfaces, ISC 2010

Preparing the RASTA Software for SpaceWire Backplanes

87

http://www.pcisig.com/�
http://www.rtems.org/�
http://www.gaisler.com/�

