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Preface 
 

These proceedings contain the papers presented at the 2010 International SpaceWire 

Conference, held in the House of Scientists, St. Petersburg, Russia, between 22 and 24 June, 

2010. The International SpaceWire Conference aims to bring together SpaceWire product 

designers, hardware engineers, software engineers, system developers and mission specialists 

interested in and working with SpaceWire to share the latest ideas and developments related 

to SpaceWire technology. 

SpaceWire links, nodes and networks are specified in the ECSS-E-ST-50-12C standard 

and additionally a number of higher layer protocols are defined in the ECSS-E-ST-50-51C, 

52C and 53C standard documents, all published by the European Cooperation for Space 

Standardization - ECSS. Since the first publication of the SpaceWire standard in 2003, 

SpaceWire technology has developed into a true global standard for high speed data networks 

on board of spacecrafts. Today it is used in many space missions in Europe, USA, Japan, 

Russia and many other space-faring nations. But also the work on the SpaceWire and related 

standards has become a truly international undertaking. Representatives from space agencies, 

industry, institutes and universities all around the world are regularly discussing the evolution 

of the standardization during the SpaceWire working group meetings, which are organized by 

the European Space Agency. After the recent publication of the standards defining the 

Remote memory access and the CCSDS packet transfer protocols running over SpaceWire, 

the discussion in the SpaceWire working group currently concentrates on the definition of a 

protocol to use SpaceWire networks concurrently for command and control as well as for 

high throughput data transfers. Other topics are plug and play over SpaceWire, the definition 

of a SpaceWire backplane and the work on a SpaceWire handbook. Also the upcoming 

revision of the SpaceWire standard and SpaceFibre are discussed. All these topics can be 

found back in the papers published in these proceedings. 

The objective of the conference is not only to bring this discussion on the evolution of 

the SpaceWire standard to a wider forum but also to give enough room for exchanging 

experiences made with the application of SpaceWire. Beyond SpaceWire standardization the 

sessions cover the presentation of missions using SpaceWire; new components, sensors and 

cables which support the SpaceWire standard; products supporting the SpaceWire standard 

including onboard equipment, instruments and related onboard software; methods and 

equipment to aid the test and verification of SpaceWire components, units and systems; and 

SpaceWire network architectures, their configuration, discovery, “plug and play” concepts as 

well as other higher level protocols and related hardware and software design issues. 

We would like to acknowledge the support and hard work of the many individuals who 

made International SpaceWire Conference 2010 a reality. First, we thank the authors and the 

keynote speakers for their high-quality contributions. We express our gratitude to the 

Technical Committee for their gracious assistance in the review process. We thank all people 

supporting us at the St. Petersburg State University of Aerospace Instrumentation, the Space 

Technology Centre at the University of Dundee and the European Space Agency. 

We acknowledge and are grateful for the generous financial support received from the 

Russian Federal Space Agency – Roscosmos and the European Space Agency. 

 

The Conference Chairpersons, 

 

Yuriy Sheinin, St. Petersburg State University of Aerospace Instrumentation, Russia 

Steve Parkes, Space Technology Centre at the University of Dundee, UK 
Martin Suess, European Space Agency, The Netherlands 
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Programme Overview  

 

Tuesday 22 June 

08.30 - 10.00 - Registration (90 mins) 

10:00-10:30 - Conference Opening / Keynote Presentation (30 mins) 

 Conference Opening : Professor Yuriy Sheynin, SUAI 

 Keynote Presentation: TBA  

10.30 - 11.30 - Space Agency Presentations (60 mins) 

 Roscosmos  

 JAXA  

 ESA 

 NASA 

11.45 - 13.00 - Standardisation (75 minutes)  

 

14.30 - 15.15 - Test and Verification 1 (45 minutes) 

 

15.45 - 17.15 - Test and Verification 2 (90 minutes) 

 
 

 

 

Wednesday 23 June 
09.00 - 10.40 - Components 1 (100 minutes) 

 

11.10 - 13.00 - Components 2 (110 minutes) 

 

14.30 - 16.00 - Poster Session/Exhibition (90 minutes) 

 

16.00 - 16.45 - Components 3 (45 minutes) 

 

16.45 - 17.50 - Onboard Equipment and Software (65 minutes) 
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Thursday 24 June 
 

Thurs 09.00 - 10.45 - Networks and Protocols 1 (105 minutes) 

 

Thurs 11.15 - 13.00 - Networks and Protocols 2 (105 minutes) 

Thurs 14.30 - 15.50 - Missions and Applications 1 (80 minutes) 

Thurs 16.15 - 17.55 - Missions and Applications 2 (100 minutes) 

 

 

Programme is subject to change 
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SPACEWIRE IN PROSPECTIVE SPACE SYSTEMS AND INTERNATIONAL COLLABORATION 

Session: Space Agency Presentations 

Keynote Presentation 

 

Sergey. A. Ponomarev 

Deputy-Director of the Federal Space Agency of Russian Federation  

(Roscosmos) 

 

Complexity and scale of technology problems for modern and prospective Space exploration 

tasks and missions are so challenging that they could be efficiently solved only by joint 

efforts in international collaboration. A good example of efficient international collaboration 

is the International Space Station development, in which international participants 

independently designed their instruments and spacecraft avionics and integrated them with 

the standardized interface in the integral ISS data and control system. The standardized 

interface used was the MIL STD 1553B that had been developed in seventies of the last 

century. 

Interfaces and protocols are the technology language for interaction of designers of units, 

systems and instruments. Interfaces development and standardization for spacecrafts and 

satellites in context of new tasks and missions, with new scope for industry production will 

give a way for new space technology development, which would provide assured 

construction of robust onboard systems in international collaboration.  

I believe that the SpaceWire technology could settle these problems. The SpaceWire as the 

system integration and forming interface would enable building heterogeneous robust 

onboard system architectures that operate in real-time. 

Unification and standardisation of interfaces is the key task for the general problem of 

spacecraft onboard systems and instruments unification. Roscosmos pay close attention to the 

unification problems. In the strategic target programme “Development of scientific and 

technology basis for spacecraft avionics and payload instruments design (2009-2020)” 

Roscosmos has formed the workgroup with the task of defining key interfaces for onboard 

systems, onboard computer system, to develop their architecture and pilot specimen design. 

With the concepts of integrated modular spacecraft avionics and onboard computing 

Roscosmos stimulates design of electronic components, VLSI and SoC, radiant tolerant 

processors, switches with integrated SpaceWire interfaces.  

SpaceWire passed a long way in its evolution and recognition, from its initial development 

and publishing its first release in 2003 to present. The international SpaceWire WG works 

with support and active involvement of ESA, Roscosmos, NASA, and JAXA. SpaceWire 

developments are in the agenda of the EC–Russian Federation Dialog in Space area.  

SpaceWire becomes the standard interface in national and international mission projects. Its 

further evolution, inclusion of Transport layer protocols and unified set of services in the 

SpaceWire family of standards give a way for wider unification in spacecraft onboard 

systems and payloads. It enabled conform SpaceWire network services to requirements and 

unified services that are specified for prospective spacecraft systems and payloads by the 

Consultative Committee for Space Data Systems (CCSDS). 

SpaceWire In Prospective Space Systems and International Collaboration
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With international experience of implementation and application of the SpaceWire 

technology – VLSI chips, instruments, space onboard data systems, tasks of further evolution 

of the SpaceWire technology are defined. New SpaceWire standard release should be 

prepared. Next generation SpaceWire standard development is to be launched for further 

increase of links throughput and length (“SpaceFibre”), for improved support of fault-

tolerance and real-time operation of based on SpaceWire onboard systems (“SpaceWire-

RT”). Roscosmos supports these activities and international collaboration in the 

developments.   

In ESA and NASA cooperation some missions with SpaceWire based instruments have been 

implemented already. Russian developers of space onboard electronics (ELVEES, et al.) and 

onboard systems have designed and implemented some pilot specimens ready for flight 

testing and qualification. Instruments and units with SpaceWire interfaces are used in 

technology and mission satellites that have been designed by “Lavochkin” company, by RSC 

“Energia”, by “Reshetneva” ISS Company, by VNIIEM. SpaceWire technology is considered 

as the integrating concept and technology for space data system of the prospective piloted 

spacecraft, which is developed by the RSC “Energia”.   

Roscosmos actively support activities in SpaceWire development and application, have great 

expectations on practice of its implementation and application in prospective national and 

international Space projects and missions.   

 

Space Agency Presentations
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SPACEWIRE NODES 

Session: SpaceWire Standardisation 

Long Paper 

Martin Suess 

ESA / European Space Research and Technology Centre, Noordwijk, The Netherlands 
Albert Ferrer 

Space Technology Centre, School of Computing, University of Dundee, 
Dundee, Scotland, UK 

E-mail: martin.suess@esa.int, aferrer@computing.dundee.ac.uk 
 

ABSTRACT 
The SpaceWire Standard ECSS-E-50-12C [1] is planned to undergo a revision. The 
main objective of this revision is to correct errors, remove ambiguities and to include 
some additional features which have been identified and agreed by the SpaceWire 
WG. 

The title of the Standard [1] is “SpaceWire – Links, Nodes, Routers and Networks”. 
While the Links and the Routers are well defined the experience from different 
implementations shows that the notion of what is comprised in a Node can differ. In 
conjunction with the new features that are going to be introduced during the revision 
of the standard to enable network discovery and PnP, the definition of a node in the 
SpaceWire network and the features it has to support need to be revised. 

1 SPACEWIRE DEFINITIONS 
As introduction some definitions of the current SpaceWire standard are reviewed. 

1.1 NODE DEFINITION 

The current standard [1] defines the nodes in section 10.4 SpaceWire nodes: 

“a. A SpaceWire node shall comprise one or more SpaceWire link interfaces 
(encoders-decoders) and an interface to the host system. 

NOTE A SpaceWire node represents an interface between a 
SpaceWire network and an application system using the 
network services. 

b. A SpaceWire node shall accept a stream of packets from the host system for 
transmission or provide a stream of packets to the host system after reception 
from the SpaceWire link, or do both.” 

SpaceWire Nodes

15



SpaceWire nodes are defined here first of all and as connection point between 
applications and the network. Further nodes are characterised as sources and 
destination of packets. It is also clear that a SpaceWire node can comprise more than a 
single link interface. 

1.2 ROUTER DEFINITION 

The current standard [1] defines the nodes in chapter 10.2 SpaceWire routing switch: 

“a. A SpaceWire routing switch shall comprise a number of SpaceWire link 
interfaces (encoder-decoders) and a routing matrix. 

NOTE The routing matrix enables the transfer of packets arriving at 
one link interface to another link interface on the routing 
switch, and the sending out from this link. Each link interface 
can be considered as comprising an input port (the link 
interface receiver) and an output port (the link interface 
transmitter). 

b. A SpaceWire routing switch shall transfer packets from the input port of the 
switch where the packet arrives, to a particular output port determined by the 
packet destination address.” 

This chapter defines also that a routing switch must have an internal port with the 
address zero to access the configuration logic like e.g. the routing table. As safety 
measure this configuration port zero must only be accessible using path addressing. 
The maximum number of physical output ports of a router is limited to 31. 

1.3 SPACEWIRE ADDRESSES 

In chapter 10.2 it is also defined that packets in SpaceWire networks can be routed 
based on either path addresses or on logical addresses. A router always deletes the 
first byte of the path address (range 0 to 32) when routing a packet. When the packet 
reaches the destination node normally the complete path address has been deleted. A 
router can optionally also delete a logical addresses byte (range 32 to 254). This is 
done in gateways between addressing regions for regional addressing and may also be 
done on the final link to a node. The last point is never the case if the system is also 
compliant to [2] ECSS-E-ST50-51C SpaceWire protocol identification. There the 
target SpaceWire node always expects a logical address as the first byte in a packet 
followed by the protocol ID. There it is defined explicitly that one SpaceWire node 
may support several different logical addresses at the same time. These different 
logical addresses can for example be used to identify different virtual channels or 
applications in the node. The logical address 254 is the default logical address which 
shall be used where the target node has no other value specified or may be used when 
the logical address is unknown by the sending node. 

1.4 TIME DISTRIBUTION 

As specified in 8.12 System time distribution, each node and router must contain one 
single six-bit time counter. This time counter is updated according to the Time-Codes 
received through any of the links or by the TICK_IN signal when the node is acting as 

SpaceWire Standardisation
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the time master in the network. Dependent on the value of this time counter compared 
to the value in the received time-code the time counter will be incremented and the 
TICK_OUT signal will be emitted. The consistent handling of the local time is one 
important aspect that is defining a node. 

2 NETWORK DISCOVERY 
In the frame of the discussion on Plug & Play for SpaceWire networks techniques for 
autonomous network discovery have been investigated. Network discovery is when a 
node can find out about the network topology and the functionality of the connected 
nodes by probing the network with interrogation packets. A lot of information on the 
network can be found by reading the configuration status accessible in a router 
through the configuration port. There the number of links of the router and their 
activity status should be accessible. These details can then be used to continue to 
discover the connected nodes and routers and in the end the complete network. One 
obvious problems is that when an interrogation packet is sent to an undiscovered 
device it is not known if this device is a node or a router. When trying to access a 
router with the default logical address 254 the packet will be normally spilled. On the 
other side, if using the path address 0 when accessing a node the same will happen. It 
became quickly clear that a unified method to access the configuration information of 
nodes and routers is needed for efficient network discovery. The currently planned 
revision of the SpaceWire standard gives the opportunity to introduce such 
modifications in the standard. 

3 SPACEWIRE NODE MODIFICATION TO SUPPORT NETWORK DISCOVERY 
After the discussions within the SpaceWire working group it has been decided to 
leave the definition of the router unchanged. Instead the definition of the SpaceWire 
node shall be adapted. Most importantly a configuration port which can be accessed 
using the path address zero should be also introduced as mandatory feature in the 
nodes to support network discovery. This gives the chance to review more general the 
definition of SpaceWire nodes and if this definition can be made more precise and 
needs to be updated. When looking at various SpaceWire implementations it can be 
perceived that currently different notions of what is a SpaceWire node exist. 
Sometimes a node is associated with a single logical address or even with an 
individual interface but often a wider definition is used. 

3.1 NODE FEATURES 

With the described modification, the concept of node is tied to a single configuration 
port which can be accessed from all SpaceWire links which belong to this node. In 
this port zero configuration space, among others, information about all links 
belonging to the node can be found. Similar important is that the node also contains 
only one single 6 bit time counter with a single time interface towards the host 
system. Time codes arriving through different SpaceWire links are handled equally 
and when the node is acting as the time master the time codes are sent out through all 
running SpaceWire links of the node. 

Both the features are the same in nodes and routers. The main feature which 
distinguishes nodes from routers is that the nodes are the sources and destination of 
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packets and that they provide an interface to the host system which is using the 
network services. 
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Figure 1: Handling of packet when arriving at a SpaceWire node 

3.2 PACKET HANDLING BY THE NODE 

The processing of a SpaceWire packet by a node following this definition is shown in 
Figure 1. The packet may have some leading bytes containing a path address. As 
specified in [2] this is followed by the logical address and the PID bytes and the 
payload of the packet. The node will start by analysing the first byte of the packet.  

A. If the leading byte is a zero the packet will be routed to the configuration port for 
processing. The second byte would be expected to be one valid logical address of 
the node or the default logical address 254. The later is especially the case if a 
node is to be discovered and the logical address is not yet known by the sending 
node. The following handling of packet will be made in accordance with the 
Protocol Identifier (PID), which could for example indicate that it is a RMAP 
packet, a PnP packet or any other protocol supported by the node. It is important 
for network discovery that the node remembers the SpaceWire link through which 
it received the packet addressing the configuration port so that any reply to an 
interrogation packet is returned through the same link of the node. 

B. If the leading byte corresponds to one of the Logical Addresses (LA) of the node 
the packet is forwarded to the host system. The PID and the rest of the packet may 
be analysed by hardware or software and may then be provided to the application 
level software for further processing. 

C. One other possibility, which is not explicitly required or excluded by the current 
SpaceWire standard, is that the packet could be forwarded through on of the other 
SpaceWire links of the node. This forwarding could be based on a path address or 
a logical address defined in a routing table. 
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D. If the first byte does not correspond to any of the options mentioned before the 
packet is spilled. 

4 ROUTING FUNCTION IN A NODE 
Whether or not to include the optional routing function described under option C as 
part of the definition of the SpaceWire node has been controversially discussed during 
previous SpaceWire working group meetings.  

For example the draft SpaceWire-PnP Protocol Definition [3] states that nodes are 
expected to have no routing function: “packets arriving at any port on a node will be 
consumed by the node.” 

On the other hand there exist already some devices like the SMCS332SpW 
(AT7911E) which include such a routing function between the SpaceWire ports of the 
node. Similar, the Golden Gate ASIC developed by BAE [5], which can be used to 
connect up to four SpaceWire interfaces through a PCI bus to the host processor, also 
contains a routing function between the SpaceWire ports. There have been also a 
number of computer boards developed which make use of the SpW-10X router 
(AT7910E) to interface to the SpaceWire network. The SpW-10X provides two 
external ports that are effectively FIFO interfaces to inject and retrieve SpaceWire 
packets into and form the network. These examples make clear that nodes with 
integrated routing function are a concept which is actually widely used. 

During a discussion it was proposed that these cases could be regarded as a node 
being attached to a router. Conceptually this could establish again the clear distinction 
between the routing and the network access point function in the Space Wire network. 
But as this connection is part of a SpaceWire network there should be one or several 
SpaceWire links between the router and this node. This is certainly not the case in the 
examples provided above and the reason is that implementing such a very short 
SpaceWire link is inefficient when the connection has to be made on a board or even 
in a chip. In addition it would also require a duplication of the configuration port zero. 
Conceptually this may be even be welcome but it will result in additional 
implementation effort. More significantly this separation of the node and the router 
function would also require a duplication of the local time counter. One belonging to 
the router and one belonging to the node. If the router and the node are attached to 
each other this duplication does not make sense. 

 

A B C D 

A 

B 

C 

D 

(a) (b) 
 

Figure 2: Example t opologies t o i nterconnect four nodes w ith re dundancy, (a) Ro uting-centric 
topology with a redundant switch, (b) Ring topology using nodes with routing capabilities 

Furthermore, the routing capability within a node allows useful network topologies as 
shown in Figure 2 (b). In some scenarios, a ring topology meets the requirements in 
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terms of bandwidth and redundancy without requiring external routing devices. The 
topology shown in Figure 2 (a) requires more harness, the powering of more devices 
and links that may not provide any advantage when for instance a simple chain of 
sensors is considered. On the contrary, the extra devices increase the complexity of 
failure cases and error recovery mechanisms. SpaceWire should not be constrained to 
certain network topologies and exclude other technologies which are widely used. 

Finally it needs to mentioned that the presented node definition does allow the 
implementation of simple nodes with only a single link, nodes with several links 
without routing or nodes with several links with routing only between certain links. 
All these cases are a possible subset of the wider definition. 

5 CONCLUSION 
In this paper discussed the revised definition of a SpaceWire node that is needed to 
enable an efficient way of network discovery as part of PnP. For an interrogating 
packet the view of a node should be aligned with the one of a router by a mandatory 
introduction of a configuration port zero in every PnP enabled node as it is required in 
every router. The border of a node should be defined similar to the one of a router. All 
SpaceWire ports belonging to one node can access the same single configuration port 
zero and the time codes received through any link act on the same single time counter. 
The main distinction between nodes and routers is that a nodes provide an interface to 
the host system which is using the network service. 

A node according to this definition may be also capable to forward a packet which it 
has received on one SpaceWire port through any other SpaceWire port of the node 
based on the physical or logical address contained in the first byte. As described this 
functionality is already implemented in a number of chips designed to provide 
SpaceWire interfaces for nodes. 

It is suggested that this revised definition of SpaceWire nodes will be included in the 
next revision of the SpaceWire standard and that it will be reflected in the definition 
of the SpaceWire PnP protocol. 
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ABSTRACT 
The basic SpaceWire Protocol Stack, standard ECSS-E-50-12С, covers a set of layers, from PHY 
to Network level. The Transport level framework is under standardization. It specifies general 
structure of the Transport PDU, claims that a variety of Transport protocols can be specified and 
work simultaneously in a SpaceWire interconnection. Transport layer protocols are in development 
with a couple of them standardised: RMAP, implementing remote memory access paradigm, and 
the CCSDS packet transfer protocol.  
For Transport protocols we discuss a variety of choices between Connectionless (CL) and 
Connection-oriented (CO) protocols. The RMAP protocol is considered as a case study of a CL 
protocol. It is efficient for system administration, for setting/checking device parameters, for casual 
data polling. In regular and intensive data transfer the RMAP request/reply scheme could be of 
excess in overheads both in communications loads and operation overheads, non-consistent in the 
stream delivery to its consumer and in pumping data out from sources with limited buffering. 
Many prospective applications to work over SpaceWire network interconnections operate with 
streaming data: data streams from high-rate sensors, ADCs, video streams input and output, etc. 
Some applications require support of multiple coherent data streams.  
An outline for a new CO-type transport protocol – Streaming Transport Protocol (STP) is presented. 
We consider features that characterised streaming transport connection and consider the selected set 
of connection parameters, data packet parameters and additional data flow information. 
The STP is implemented in our designs as a proprietary protocol. After its demonstration and trial it 
could be proposed for standardization by the SpaceWire community. 

 

1. Introduction 

According to the OSI 7-layer Reference Model, the transport layer is the lowest layer that operates 
on an end-to-end basis between two or more communicating hosts. The service of the transport 
layer use application entities. Communication between peer entities consists of an exchange of 
Protocol Data Units (PDUs). Application peers communicate using Application PDUs (APDUs), 
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while transport peers communicate using Transport PDUs (TPDUs). Interfaces between adjacent 
layers are provided with Service Access Points (SAP), by which the upper layer applies with its 
request to the lower one with data and control units that are the Service Data Units (SDU) of the 
layer in consideration. For the Transport layer it is the Transport Service Data Unit (TSDU) (used 
to be informally called a message), Figure 1. 

 
Figure 1. 

The basic SpaceWire Protocol Stack, standard ECSS-E-50-12С, covers a set of layers, from PHY 
to Network level. The Transport level framework is officially added by the three new standards, 
[1, 2,3

Besides the standardised transport protocols the ECSS-E-ST-50-51C leaves a space for proprietary 
protocols also. With the 8-bit PIDs (Protocol Identifiers) coding the codes in the range 240 to 254 
(0xF0 to 0xFE) could be used for particular non-standard protocols, one could develop and 
implement in its products. Reasons for developing new protocols could be specific requirements of 
particular projects and missions or lack of required for some transport services features and 
characteristics. In such cases a new protocol could be developed and implemented in addition to 
standardised ones as a proprietary transport protocol. With its implementation, which could be 
considered as proof of concept, and substantiation that similar features could not be covered with 
reasonable efficiency by the standardised protocols the new protocol cloud be standardised also by 
the SpaceWire WG.  

]. The ECSS-E-ST-50-51C introduces the Transport layer in the SpaceWire protocol stack 
and gives the SpaceWire transport protocol identification; the SpaceWire Transport layer is defined 
to be multiprotocol layer that supports simultaneous operation of multiple transport protocols 
running in a SpaceWire network. The next two standards specify the first two standardised 
transport protocols: the ECSS-E-ST-50-52C SpaceWire specifies the RMAP (Remote memory 
access protocol) transport protocol, the ECSS-E-ST-50-53C SpaceWire specifies the CCSDS 
packet transfer protocol transport protocol to run over SpaceWire interconnection.  

Transport services can be divided into two types: connection-oriented and connectionless. A 
connection-oriented (CO) service provides for the establishment, maintenance, and termination of a 
logical connection between transport users. A transport service user generally performs three 
distinct phases of operation: connection establishment, data transfer, and connection termination. A 
connectionless (CL) service provides only one phase of operation: data transfer. A connectionless 
(CL) service provides no T-Connect and T-Disconnect primitives exchanged between a user sender 
and the transport sender, but gives only one phase of operation: data transfer. 

As services are CO/CL specified, transport protocols could be classified CO or CL as well. The 
distinction depends on the establishment and maintenance of state information, a record of 
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characteristics and events related to the communication between the transport sender and receiver. 
A transport protocol is CO if state information is maintained between transport entities. If no state 
information is maintained at the transport sender and receiver, the protocol is CL. A CL protocol is 
based on individually self-contained PDUs often called datagrams that are exchanged independently. 
Each datagram contains all of the information that the receiving transport entity needs to interpret it. 

The standardized Transport layers protocols RMAP and CCSDS PTP are connectionless protocols. 
More particular, the RMAP protocol could be classified as a transaction-oriented protocol, 
[4].Transaction-oriented protocols follows an asymmetrical model (i.e., client and server), short 
duration, low delay, few data TPDUs, and the need for no-duplicates service. Transaction-oriented 
protocols attempt to optimize the case where a user sender wishes to communicate a single APDU 
(called a request) to a user receiver, who then normally responds with a single APDU (called a 
response). Such a request/response pair is called a transaction. The RMAP protocol is efficient for 
system administration, for setting/checking device parameters, for casual data polling. In regular 
and intensive data transfer the RMAP request/reply scheme could be of excess in overheads both in 
communications loads and operation overheads, non-consistent in the stream delivery to its 
consumer and in pumping data out from sources with limited buffering, [5

Many prospective applications to work over SpaceWire network interconnections operate with 
streaming data: data streams from high-rate sensors, ADCs, video streams input and output, etc. 
They have different features for which CL-class, transaction-oriented protocols like RMAP is not 
efficient. It motivated us in development of a new CO-type transport protocol for SpaceWire 
networks – the Streaming Transport Protocol (STP). 

]. 

 

2. Streaming Transport Protocol (STP) features 

The Streaming Transport Protocol (STP) is aimed for processing with stream-oriented 
information flow sources. Such types of sources could be found in many space systems and 
spacecraft payloads, e.g. ADC with high sampling rates, ADC with preprocessing, video cameras, 
SAR sensors, high-rate instrument sensors, etc. They have some general common features: 

• Information flow is generated by the information source continuously. 

• Information flow is a sequence of information chunks of fixed and the same length. 

• Information chunks are generated by the source, may be periodically with some time 
interval. 

• Information chunks length and generation time interval could change, but being changed 
they keep it operating for a long period. 

• Corrupted and lost in transmission information chunks are not expected to be repeated; in 
most cases – could not be repeated by the source. 

• The receiver cannot stop generation of the information flow by the source instantaneously. 

Additional feature one can find in many applications is that a receiver, e.g. the payload data 
processing unit, quite often deals with a set of similar sources that form a set of data streams. 
Moreover, some applications require support of multiple coherent data streams and this feature is to 
be supported by the transport service also. 

Such a set of features justifies development of the tailored for it protocol, we call the Streaming 
Transport Protocol, STP. The STP provides for applications the connection-oriented transport 
service that fits the target information flow features. Continuous data generation and sending with 
stable features do not require a mode control per data chunk. The logic link between a source and 
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the receiver and its mode of operation could be set once for a long period, thus omitting overheads 
for per PDU transmission and delivery mode control. The connection-oriented service and CO 
transport protocol look quite natural here.  

The STP is developed as the CO transport protocol for regular data stream transfer from the source 
as the slave (with or without internal buffering). Interaction between the source and the recipient, 
the Transmitter and the Receiver is based on the establishment and maintenance a logical 
connection between these transport users. The master initiates establishment of the session, with 
setting logical connection – the transport channel, and setting its mode of operation and parameters. 
The session will be in operation until it will be terminated by the transport connection endpoint – 
the master.   

Like the RMAP, the STP is an asymmetric protocol with the master and the slave(s). The master is 
the recipient and the slave is the source of the data stream to be transmitted. As distinct from 
RMAP, which requires a read command to be send to the slave to initialise transmission of data 
PDU from it, the STP initialises data transmission ones for a long period of operation. After it the 
source (the slave) will send data PDUs one by one in accordance with the set for the transport 
connection parameters. The source governs itself the moments of data PDUs transmission (on data 
availability, on its generation time interval, etc.), without per PDU requests from the master 
(receiver).  

The STP forms its PDU form the SDU that is supplied by the Application layer through the STP 
SAP. The SDU is enveloped and transmitted in the single STP PDU; STP does not use 
packing/unpacking of an SDU into fragments.  An SDU is reformatted into a PDU that is 
transferred to the SpaceWire Network level for transmission in a single packet. Transmitted by the 
transport connection PDUs have the fixed size that has been set in the transport connection 
establishment phase. Changes in any mode and parameters, the size included, in the STP could be 
done only by termination the connection and establishment of a new transport connection with 
modifies parameters. 

With the STP idea of the host-receiver and slave-transmitter a STP transport connection is a point-
to-point connection. A transport connection supports connection with a single slave and unicast 
service. However, it is considered that the master can have multiple transport connections with 
multiple slaves. Though they would be separate connections, they could be considered as correlated 
ones. From the master node (host) application point of view it could be a set of flowing together 
data streams, in some cases – coherent streams. Thus we have here an opposite to the multicast 
transmission case, so to say Inverse Multicast – a many-to-one transmission, [6

 

]. To support of 
multiple coherent data streams feature the STP introduces a special field in data packets for 
coherence alignment of the incoming data streams in the receiver.  

3. STP phases 
3.1. Connection establishment 
A Connection establishment launches the transport session between the host and a slave and 

builds the transport connection between them. The transport connection is asymmetric logical 
connection for transmission of packets from the source (slave) to the recipient (master). In the 
opposite direction the master sends control PDUs (commands) to the slave. On the transport 
connection (TC) establishment the TC parameters are set that would be in operation for the whole 
TC lifetime. The cost associated with the connection establishment would be amortized over a 
connection's lifetime. 
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Initiator of connection is the receiver (master). For the STP avoiding false connections is important, 
so 2-way or 3-way handshake mechanisms with explicit exchange of control TPDUs are needed. 
When the underlying network service provides a small degree of loss, a 2-way-handshake 
mechanism may be good enough to establish new connections without significant risk of false 
connections. The SpaceWire interconnections have rather low BER. However high robustness 
requirements for the space grade onboard interconnections shift the level of risk that is acceptable; 
it motivated us to move to the 3-way handshake. Three-phase protocol is used by the STP for 
connection establishment, Figure 2.  

receiver 
(master) source (slave)

Open_connection

ack_connection

set_connection

source (slave)

close_connection

Ack_close_connection

finish_connection

Receiver (host, 
master)

 
Figure 2.        Figure 3. 

The master sends an Open Connection to the slave, which responds with an Ack_Connection. The 
procedure is completed with a Set_Connection. No user data is carried on the connection 
establishment TPDUs. The 3-way-handshake is needed to prevent false connections that might 
result from delayed TPDUs. 

3.2. Data transfer 
Data PDUs could be transferred after the transport connection has been established. Permission for 
data transmission is sent by the receiver that should send a Start_transfer command to the receiver. 
A data PDU is generated by the slave and is sent to the master by the transport connection between 
the slave and the master.  

Data transfer at the transport layer requires some flow control by which the recipient would not be 
flooded by the incoming PDSU flow and the underlying interconnection would not be blocked by 
packets that the recipient cannot intake. It can be done by preventing a transport sender from 
sending data for which there is no available buffer space at the transport receiver, or by preventing 
too much traffic in the underlying network. The SpaceWire interconnection doesn’t have a 
standardised feature for preventing traffic overflow at the Network layer (though some 
implementations could have it). The STP Flow control mechanism uses the receiver crediting End-
to-End Flow Control (E2E FC). The receiver (master) issues credits n in the number of packets it 
has buffer space for. The transmitter can send no more than the number of packets it has credits for. 
The packet size is defined in the transport connection parameters that are set in the Connection 
establishment phase and is known to both sides of the TC  

The master can send the n = 0 that means the credit an unlimited number of packets. In fact, it is 
switching of the credit-based E2E FC. In many applications the receiver (the master) knows the 
PDU flow rate that could be generated by the source and is quite sure that could process the 
incoming data PDU flow in its regular mode of operation. The transmitter will send a packet after a 
packet by the TC without waiting for anything from the receiver to continue this process. The 
receiver shall receive and take them away from the TC. In case it cannot do it after some time, it 
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can stop the PDU flow by sending Stop control PDU to the transmitter. The transmitter should stop 
sending data PDU immediately as soon as it receives this control PDU. It is realised that a set of 
data PDUs could be left in the TC (in the underlying interconnection), which has been send in the 
interval between the moment when the receiver decided to stop transfer and the moment when the 
transmitter has received the Stop command. The receiver is obliged to take out all the left after its 
Stop command issue packets; the receiver can use them if it has buffer place for some of them or 
throw them away, these packets are considered to be lost.  

The STP provides the ordered transport service. As an ordered service it preserves the user sender's 
submission order of data when delivering it to the user receiver (in-order delivery). It never occurs 
that a user sender submits two pieces of data, first A, then B, and A is delivered after B is delivered. 

The STP considers ordering as providing a linear order of SDU generation events. For a SDU 
generation event in the source the strict order relation is defined to the events of all other PDUs’ 
generations. The wall clock time of an event is not considered by the STP protocol FSM. 

The STP understands that a basic SpaceWire interconnection does not guarantee in-order delivery 
of the sent packets. To control the in-order delivery of the STP PDUs and to reconstruct the initial 
PDUs order it includes the ordinal number of the SDU in the STP data packet format. 

The STP has been developed in the general scope of the SpaceWire evolution, following its basics, 
compact implementation included. Thus the reordering of PDUs is limited by some number of k 
packets (a TC parameter). Outside the window of k packets a limited in-order delivery is provided, 
the reconstruction of the initial packet order at the receiver side is not guaranteed. Instead, the 
violating the order packets are discarded; their places in the ordered SDU sequence, which is 
returned to the upper layer, are filled by the default filler SDU (a TC parameter). 

The STP provides a not guaranteed PDU delivery. An Error Control is provided, but corrupted or 
lost packets are not reconstructed or retransmitted. It corresponds to the nature of many steaming 
data applications. The receiver does not inform the transmitter of receive errors and do not request 
to resend PDUs. The source does not keep a sent by it PDU and do not retransmit it. However, the 
upper layer at the receiver side is informed about errors in the forwarded to it SDU flow. 

 

3.3. Connection termination 
Closing of the session and termination of the current transport connection with the slave is initiated 
by the master. For connection termination the STP uses a three-phased protocol that is illustrated by 
Figure 3. When the session and the TC are closed all its parameters are reset.  

Two 2-way-handshakes are used, one for each direction of data flow. The master transport entity 
sends a Close_connection to its peer entity. The slave (transmitter) stops to send next data PDUs 
and then acknowledges the disconnect request by Ack_close_connection. The connection is 
terminated when all the incoming data flow is received by the master(receiver) – a sequence of 
PDUs in the TC finished by the Ack_close_connection. It ensures graceful TC termination, in 
normal operation no data in transit will be lost. Next the master confirms that it has received the 
acknowledgement and considers the TC is closed. After both sides have come to the “Closed” state 
for the TC, they become ready for establishment of another connection between them. 
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4. STP packet formats.  
The STP uses three basic packet formats 

• Packet-Command with parameters 

• Packet-Command without parameters 

• Data packet 

4.1. STP Command packets 
List of the STP commands (command PDUs) is presented by the Table 1. 

Table 1. STP commands 

Code Command With/without parameters 

0000 open_connection With parameters 

0001 ack_connection Without parameters 

0010 set_connection Without parameters 

0011 close_connection Without parameters 

0100 ack_close_connection Without parameters 

0101 finish_connection Without parameters 

0110 start_transfer Without parameters 

0111 stop_transfer Without parameters 

1000 credit_transfer Without parameters 

1001 - 1111 Reserved -- 

Commands without parameters are simple and compact (SpW header plus 5 bytes). In fact, 
commands with parameters are not used in the data transfer phase at all; all the possible for this 
phase commands are without parameters. The format of packet-commands without parameters is 
represented at the Figure 4.  

Protocol ID Packet TypeConnection_ID CRCSpW Header

STP_type=00 t_type=0 с_type=ссссf_type=0

 
Figure 4 

For the STP it is considered that the master can have multiple transport connections 
simultaneously; so the commands contain connection identification. Connection identifier is placed 
in Connection_ID field; its value could be from 0 to (216 – 2), with the FFFF intended for special 
goals.  Thus the STP master can have up  to (216 – 1) TCs with different slaves. 

The Figure 5 represents general format of packet-command with parameters. 
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Protocol ID Packet TypeConnection_ID Command’s fieldsSpW Header
SpW 
логический 
адрес

CRC

Length Up to 4 bytes
All bytes except last (logical 

address of receiver) are 
deleted when packet goes 

via SpW network

Protocol 
identifier 
1 byte 

Connection identifier
2 bytes

1 byte 
Parameters of transport level 

connection
 (only for Open_connection 

command)

STP_type=00

Version of STP
2 bits

t_type=0

Command
/data 
1 bit

с_type=сссс

Command 
identifier

4 bits

f_type=0

Long / 
short 

packet
1 bit

CRC

Packet type 
1 byte

1 byte 

7..6 5 4 3..0

 
Figure 5 

4.2. STP Data packets 
Format of data packets represented at the Figure 6. The solid lines mark the boundaries of the 32-
bit words (informative).  

Protocol ID Packet TypeConnection_ID Data fieldCRCDest_addr CRC

Data from FIFO (number of 
bytes corresponds to 

Packet_size in 
Open_connection) 

STP_type=00 t_type=1 с_type=0000f_type=0

Data_id FLAGS

Length until 4 bytes
All bytes except last (logical 

address of receiver) are 
deleted when packet goes 

via SpW network

Protocol 
identifier 
1 byte 

Connection 
identifier
2 bytes

1 byte 

Version of STP
2 bits

data 
1 bit

Command identifier
4 bits

Long / 
short 

packet
1 bit

Packet type 
1 byte 1 byte 1 byte 1 byte 

 
Figure 6 

The Data_ID field (1 byte) is used for data identifier. Data identifier is generated by the source. 
Data identifier of every next data PDU is incremented by one; after 255 is the data identifier 0. If 
the transmitter received Stop_transfer command, after the following Start_transfer the Data_ID of 
first data packet  will be 0. 

The sFLAGs field is not specified in the STP; it could be used for flags that are generated and 
processed at the Application level. For instance, it could be used by the Application level protocols 
for its piggybacked control information transfer. 
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Conclusion 

The Streaming Transport Protocols covers the streaming data transfer over the basic SpaceWire 
networks, which are not supported efficiently by the standardized Transport layer protocols.  

The STP could be implemented over the basic SpaceWire interconnections with existing switching 
routers. Like the RMAP it could be implemented in nodes, e.g. processor-based nodes, in 
peripheral microcontroller nodes, in software. However, a hardware implementation of the STP is 
also quite feasible and can give better throughput and latency characteristics.  Different STP 
implementation profiles could be specified also around its core functionality giving more cost-
efficient specialization for particular applications with strict resource constraints. The STP is 
implemented in our designs as a proprietary protocol. After its demonstration and trial it could be 
proposed for standardization by the SpaceWire community. 

Further developments could cover alternative, from the master to slaves, and bi-directional data 
streams transfer that are not covered by the current STP specification version. More interesting 
features, e.g. real-time coherent data streams stamping and correlation, could be built in STP with 
rely on the future SpaceWire 2.   
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ABSTRACT 
How can data be delivered deterministically over an existing SpaceWire network 

using existing SpaceWire components i.e. with no modification to the SpaceWire 

interface or router hardware? The approach explored in this paper is the sharing of 

system bandwidth using time-division multiplexing. The paper explores deterministic 

delivery over SpaceWire networks, describes how this can be achieved with current 

SpaceWire nodes and routers, provides corresponding theoretical performance 

estimates, and reports on a practical demonstration of SpaceWire-D. 

1 INTRODUCTION 
SpaceWire provides a versatile network architecture which is ideal for many space 

applications [1]. It has been widely used for payload data-handling on more than 30 

space missions. SpaceWire is ideal for data-handling applications but does not address 

avionics and other applications where responsiveness, robustness, determinism and 

durability are essential requirements. There is a need for a spacecraft avionics network 

technology which combines the key features of SpaceWire with the quality of service 

requirements of real-time avionics applications. One critical requirement for avionics 

applications is deterministic delivery of information. 

2 THE PROBLEM WITH DETERMINISTIC DATA DELIVERY OVER SPACEWIRE 
Deterministic data delivery is the delivery of data within predetermined time-

constraints: not too early and not too late. The essential consideration is a priori 

knowledge of when data will be delivered and the level of uncertainty in that 

knowledge. SpaceWire-D (where D stands for determinism) is a protocol that 

provides deterministic delivery over a SpaceWire network [2]. SpaceWire-D delivers 

data within predetermined time constraints. 

SpaceWire is an asynchronous network which uses wormhole routing. The leading 

byte(s) on a SpaceWire packet determines the route through the network using path or 
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logical addressing. When the start of a packet arrives at a router it is switched to the 

required output port straightaway, provided that the required output port is not already 

being used to transfer another packet. Storing and forwarding of packets is not used 

by SpaceWire routers. This reduces the amount of buffer memory required in the 

routing switches. A disadvantage arises when the output port is already being used to 

transfer another packet and the packet has to wait for the output port to become free. 

The packet will be left strung out across the network from the blockage back to the 

source of the packet. It will prevent any other packet being transferred across the links 

that the packet is occupying.  

This gives rise to the main difficulty in providing deterministic data delivery over 

SpaceWire: access to the SpaceWire network has to be controlled to avoid conflicting 

use of network resources. For example, two packets that need to travel down the same 

link at the same time will result in one packet having to wait while the other is 

transferred, leading to possible temporary blockage of the network resources that are 

being used by the waiting packet. The time of packet delivery thus depends on other 

packets flowing through the network. To ensure deterministic data delivery, all the 

traffic flowing through the network must be closely controlled. 

A related problem occurs when a destination is not ready to receive and process a 

SpaceWire packet. If the destination node is not ready the packet will be strung out 

across the network blocking the links that it is resting on and temporarily preventing 

them from being used to transfer any other packets. So, not only is there a need to 

control packets going onto the network, but there is a need to ensure that once a 

packet arrives at its destination it is dealt with and removed from the network quickly. 

Many components and sub-systems have already been designed using SpaceWire and 

ideally any deterministic data delivery mechanism for SpaceWire should be 

compatible with existing SpaceWire components. In any case it ought to be fully 

compatible with the SpaceWire standard.  

3 SCHEDULING SPACEWIRE TRAFFIC 
To prevent conflicting use of network resources the traffic has to be scheduled to 

avoid those possible conflicts. This requires a schedule table that defines which nodes 

can send packets at a particular time and some means of synchronising the nodes on 

the network so they can all follow the schedule. SpaceWire time-codes provide a 

mechanism for broadcasting time or synchronisation information across a SpaceWire 

network. The schedule is constructed from a series of periodic time-slots. The start of 

each time-slot is indicated by the arrival of a time-code so that all nodes are kept in 

synchronisation (see Figure 1). 

Time-Slot 6 Time-Slot 7

Time-Code 6 Time-Code 7 Time-Code 8

 

Figure 1 Time-Slots 
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4 WHAT SHOULD BE SCHEDULED? 
Consider a system that schedules the sending of SpaceWire packets. A command may 

be sent in a SpaceWire packet to another node requesting that it returns some data. 

There is an asymmetry in the size of the packet used to send the command which is 

short and the reply containing the data which can be relatively long. Time-slots of 

equal period would not be very efficient in this case: a short time-slot is required 

followed by a longer one. If the command is sending data to the destination node and 

an acknowledgement is required then a long time-slot is required followed by a 

shorter one.  

To mitigate the problem the complete transaction could be scheduled instead of the 

sending of individual SpaceWire packets. A transaction would then cover both 

sending the command and receiving the reply. The Remote Memory Access Protocol 

(RMAP) provides a transaction layer protocol which is able to read or write to 

memory in a remote SpaceWire node [3]. Designed for configuring, controlling and 

collecting data from instruments and other sub-systems it is being used in SpaceWire 

based systems. Components supporting RMAP include the ESA/UoD SpW-10X 

router [4] and ESA/Saab Remote Terminal Controller (RTC) device [5]. Missions 

using RMAP include Bepicolombo, ExoMars and MMS [6]. 

5 SPACEWIRE-D 
To make maximum use of existing SpaceWire technology and devices, RMAP is used 

as the basic communication mechanism for SpaceWire-D and time-codes are used as 

the synchronisation mechanism. 

Operation of the SpaceWire-D network is governed by a schedule that defines which 

node is allowed to initiate an RMAP transaction at any particular time. An example 

simple schedule table is illustrated in Figure 2. 

Time-slot 0 1 2 3 ... 63 

Initiator allowed to initiate an 

RMAP transaction (logical 

address). 

41 56 43 41  98 

Figure 2 Example Simple Schedule Table 

Each time-slot is long enough to allow one complete RMAP transaction to take place, 

allowing an RMAP initiator to read or write information to a remote RMAP target 

device. Since RMAP can transfer large amounts of data in a single transaction, which 

would take a long time, it is necessary to restrict the maximum amount of data that 

can be transferred in a single RMAP operation, so that the RMAP transaction does not 

take longer than one time-slot (but see section 6.3 later). 

Each RMAP initiator has a copy of the schedule table. When a valid time-code arrives 

signalling the start of the next time-slot, each initiator checks whether it is allowed to 

start an RMAP transaction in that time-slot. If it has permission the initiator will send 

an RMAP command and wait for the RMAP reply. The RMAP command will travel 

across the SpaceWire network to the target node without any delay caused by network 

blockage, assuming that the schedule has been specified correctly.  
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When the RMAP command arrives at the target device, it is processed according to 

the RMAP standard and data read from or written to memory in the target device. It is 

important that this happens fairly quickly without the RMAP command being held up 

on the network. The RMAP reply containing data for a read command or an 

acknowledgement for a write command is then sent back across the network to the 

initiator.  

Once the RMAP transaction is complete the initiator waits for the start of the next 

time-slot and then determines if it is allowed to send another RMAP command in the 

next time-slot. 

6 SCHEDULE TYPES 
There are three types of schedule defined in the SpaceWire-D specification: simple, 

concurrent and multi-slot schedules. 

6.1 SIMPLE SCHEDULE 

The simple schedule has been illustrated in Figure 2. It gives one specific initiator full 

control of the network for one or more specified time-slots. This means that when that 

initiator is permitted to send an RMAP transaction it may do so to ANY target node 

on the network. The RMAP transaction must start and finish in the same time-slot. 

6.2 CONCURRENT SCHEDULE 

The concurrent schedule makes more efficient use of network bandwidth by allowing 

more than one initiator to initiate RMAP transactions in a time-slot. Additional 

network performance is gained at the expense of a more complex schedule. This gives 

rise to the possibility that two initiators might attempt to use the same network 

resources (SpaceWire links) at the same time. The schedule table has to be 

constructed to prevent this. More than one initiator may initiate RMAP transactions in 

the same time-slot provided that the paths from each of the initiators to their targets do 

not use any of the same SpaceWire links in the network. 

A typical application is on board data handling, where a mass memory unit is reading 

data from each instrument and writing data to a telemetry system, while a control 

processor is controlling instruments and monitoring housekeeping information. An 

example schedule table is illustrated in Figure 3. 

Time-slot 0 1 2 3 ... 63 

Control Processor Targets 41, 43, 

44, 45, 

42, 43  42, 43 40, 41, 

43, 44, 

 40 

Mass Memory Targets 40 41 41 42  49 

Figure 3 Example Concurrent Schedule Table 

In this example the control processor can initiate RMAP transactions with one of 

several target devices listed in the schedule table for each time-slot. The mass 

memory device is gathering information from one target device in each time-slot. The 

targets that the control process can communicate with are carefully chosen to avoid 

any network resource conflicts with the transactions that the mass memory device is 

initiating in each time-slot. 
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6.3 MULTI-SLOT SCHEDULE 

The multi-slot schedule builds on the concurrent schedule to improve network 

efficiency further. Where a large amount of data has to be transferred between two 

nodes, the RMAP transaction to accomplish this is permitted to occupy more than one 

adjacent time-slot. This allows more data to be transferred in the one RMAP 

transaction. The schedule has to ensure that no conflict of network resources occurs 

over the duration of this extended RMAP transaction. Additional network 

performance is one again achieved at the expense of a more complex schedule. 

The schedule table has to ensure that when an RMAP transaction duration has more 

than one time-slot, it does not use the same network resources (SpaceWire links) as 

any other transactions occurring during any of those time-slots. An example schedule 

table is illustrated in Figure 4. 

Time-slot 0 1 2 3 ... 63 

Control Processor Targets 41 42 43   40 

Mass Memory Targets 40 41 42  49 

Figure 4 Example Multi-Slot Schedule Table 

In this example the mass memory initiates a long RMAP transaction with target 41 in 

time-slot 1. This transaction is expected to complete within two time-slots. 

7 INITIATOR AND TARGET CONSTRAINTS 
The time for the complete RMAP transaction to take place must be within the limits 

of the time-slot, or one transaction will have an impact on subsequent transactions. To 

achieve this, certain constraints are placed on the initiator and the target nodes. 

SpaceWire-D initiator and target implementations are fully compatible with the 

SpaceWire and RMAP standard. The constraints listed place some restrictions on the 

implementation covering the amount of data that can be transferred in a single RMAP 

transaction and the speed of response of the initiator and target devices. 

7.1 INITIATOR CONSTRAINTS 

The following constraints apply to the RMAP Initiator: 

 The maximum amount of data that can be read in an RMAP read command or 

written in an RMAP write command is 256 bytes (TBC). This limits the size 

of the RMAP write command or RMAP read reply so that it does not exceed 

the duration of the time-slot. There is a trade-off between amount of data 

transferred in a single RMAP transaction and performance. Sending more data 

is more efficient giving an improved overall data rate, but the time-slot period 

then has to be longer making the delivery of data less timely. 

 The maximum amount of data may be longer than 256 bytes when multi-slot 

scheduling is being used. 

 The time taken from the receipt of a time-code to starting to send out an 

RMAP command from an initiator must be less than 5 μs (TBC). Note if this 

is difficult to achieve with a specific implementation of an initiator, operating 
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a local clock synchronised to time-codes might help with achieving this 

requirement. 

7.2 TARGET CONSTRAINTS 

The following constraints apply to the RMAP targets: 

 The time taken from receipt of the complete RMAP command header in a 

target node to the authorisation or rejection of that RMAP command must be 

less than 5 µs (TBC). 

 The latency in transferring data from SpaceWire interface to memory must be 

less than 5 μs (TBC). 

 The time taken from completion of writing data to memory to starting to send 

the RMAP command must be less than 5 µs (TBC). 

These constraints are readily met by the SpW-10X and RTC devices. 

8 PERFORMANCE 
In this section the anticipated performance of SpaceWire-D is considered. The 

operation of an initiator and target performing a write operation during a time-slot is 

illustrated in Figure 5. 

Time-code Time-code

Initiator user to RMAP command sent out

RMAP command sent by initiator HDR DATA

Network propagation delay

HDR DATARMAP command received at target

Authorisation delay

DATAData written to memory in target

Additional latency writing data

RMAP reply send delay

RMAP reply sent by target

REPLY

Network propagation delay

RMAP reply received at initiator

REPLY

a

b

c

d

e

e

f

g

h

i

Figure 5 Performance of RMAP Write 

The receipt of a time-code starts off the activities indicated in Figure 5. The following 

paragraphs explain each time interval labelled in Figure 5. 

a) Interval from receipt of time-code to the RMAP command starting to be sent by 

the initiator. This interval includes: the time to receive, decode and respond to the 

time-code; the time to check the schedule table; the time to start to send out the 

RMAP command (assuming that the command has already been prepared ready 

for sending). This interval is entirely dependent upon the initiator implementation. 
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b) Interval for the SpaceWire packet containing the RMAP command to propagate 

across the SpaceWire network from initiator to target. This will mainly depend 

upon the number of routers between the initiator and the furthest target node. 

Assuming a time delay per router of 0.6 μs, the total propagation delay will be 

0.6R μs where R is the number of routers in the longest path used between an 

initiator and a target. 

c) Interval for sending the RMAP header, including any path address bytes. The size 

of the RMAP header including the SpW Target Address and Reply Address is 

H=R+16+P bytes, where R is the number of routers in the path from initiator to 

target and P is a the closest multiple of 4 which is greater than or equal to R. Thus 

if there are four router R=4 and P=4, so H=24 bytes. The time to send this header 

depends upon the SpaceWire data rate, S Mbits/s, and is 10H/S μs. For example 

with H=24 and S = 200 Mbits/s, Tc = 1.2 μs. 

d) Interval for authorising the RMAP command once the header has been received. 

This is dependent upon the target implementation. 

e) Interval to send the data and data CRC. This is given by 10(D+1)/S, where D is 

the number of data bytes. For D = 256 (the maximum amount of data permitted in 

a SpW-D RMAP write command or read reply) the time to send the data and data 

CRC is Te = 12.85 μs when S = 200 Mbits/s. 

f) Assuming that the target is able to write data to memory as fast as the SpaceWire 

network can deliver it, this interval covers any additional latency in the transfer of 

data from the SpaceWire interface to memory. It is dependent upon the 

implementation of the target node. 

g) Interval from the completion of writing data to memory in the target to starting to 

send the RMAP reply. This interval is dependent upon the implementation of the 

target node. 

h) Interval for the SpaceWire packet containing the RMAP reply to propagate across 

the SpaceWire network from target to initiator. This will mainly depend upon the 

number of routers between the initiator and the furthest target node. Assuming a 

time delay per router of 0.6 μs, the total propagation delay will be 0.6R where R is 

the number of routers in the longest path used between an initiator and a target. 

This interval is the same as (b). 
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i) Interval for sending the RMAP reply, including any path address bytes. The size 

of the RMAP reply including the Reply Address is E=R+8 bytes, where R is the 

number of routers in the path from target to initiator. Thus if there are four router 

R=4, E=12 bytes. The time to send this header depends upon the SpaceWire data 

rate, S Mbits/s, and is 10E/S μs. For example with E=12 and S = 200 Mbits/s, 

Ti = 0.6 μs. 

The total time for the complete transaction is: 

 Ttotal = Ta + Tb + Tc + Td + Te + Tf + Tg + Th + Ti 

The corresponding performance of a SpaceWire-D network using simple scheduling 

is illustrated in Figure 6. The RMAP read operation has similar performance. The 

following assumptions were made: 

 The link data rate is 200 Mbits/s,  

 A simple schedule is used with one initiator initiating transactions at any time,  

 The traffic comprised both payload data transfers (256 bytes per RMAP 

transaction) and command and control information (4 bytes per RMAP 

transaction) with an average of 132 bytes per RMAP transaction. 

  

Figure 6 SpaceWire-D Performance 

For a network with several layers of routing and links running at 200 Mbits/s, the 

overall data rate of the simple schedule system is around 30 Mbits/s (real data rate).  

Initial SpaceWire-D prototyping done at Dundee to confirms this performance [7]. 

The performance of a system using concurrent scheduling depends on the number of 

concurrent initiators and the extent to which they can be scheduled to avoid use of 

common SpaceWire links. The maximum performance is N times that of the simple 

schedule, where N is the number of concurrent initiators. 

The multi-slot schedule can substantially improve performance when there are large 

amounts of data to be transferred. 
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9 DEMONSTRATION SYSTEM 

An implementation of SpaceWire-D has been developed by STAR-Dundee and the 

University of Dundee. This demonstration system used STAR-Dundee SpaceWire 

interface and routing devices. It also tested operation with an RTC device [7]. A 

screen shot of the demonstration system is shown in Figure 7. 

Figure 7 Screen Shot from SpaceWire-D Demonstration System 

10 CONCLUSIONS 

SpaceWire-D provides a means of providing deterministic data delivery over 

SpaceWire. It builds on RMAP and is fully compliant to the existing SpaceWire 

standard. Furthermore existing components can be used in many cases without 

modification provided they meet some straightforward timing constraints. A 

demonstration system has been developed which showed SpaceWire-D operating as 

expected with multiple initiators and different types of target device. 
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ABSTRACT 

SpaceFibre [1] is a very high-speed serial communications link being designed for use 

on spacecraft. It is designed to operate at speeds of 2 Gbits/s or higher depending on 

the specific driver/receiver technology used. Copper or fibre optic physical layers can 

be used. SpaceFibre is designed to interoperate with a SpaceWire network with a 

single SpaceFibre link being able to carry data from many SpaceWire links. 

This paper provides a brief introduction to SpaceFibre and outlines the results of 

several SpaceFibre prototypes. It then considers how quality of service (QoS) will be 

implemented in SpaceFibre. The application of SpaceFibre in instruments, mass 

memory and processing systems is then described. The paper concludes with an 

overview of the current state of the SpaceFibre specification. 

1 INTRODUCTION 

SpaceWire [2] provides point-to-point and networked payload communication 

services for use on board spacecraft. It connects instruments to mass memory units 

and processing systems and provides the connection from the mass memory to the 

downlink telemetry system. SpaceWire uses bi-directional data links that operate up 

to 200 Mbits/s using current radiation tolerant components and micro-miniature D-

type connectors. Higher speed operation is possible when matched impedance 

connectors are used. SpaceWire is being used on many space missions across the 

world. This success is due to many factors including standardisation, simplicity of 

implementation, performance and flexibility. 

Several instruments, including synthetic aperture radar and multi-spectral imagers, 

require higher data rates to the mass memory unit. Downlink telemetry systems are 

being designed that can support Gbit/s data transfer leading to the need for similar 

data rates to transfer the data from the mass memory unit. There is a growing 

requirement for a data communication link with an order of magnitude higher 

performance than SpaceWire. Standardisation, simplicity of implementation and 
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flexibility are also import characteristics that need to be provided for a new data link 

technology to be successful. 

The University of Dundee have been working on a Gbit/s data link technology for 

several years [3]. Trade-offs of ground data link technologies that could possibly be 

used as the basis for a new spacecraft Gbit/s data link have been carried out. An 

outline specification for SpaceFibre has been written and prototype implementations 

have been implemented and tested. Extensive work has been carried out for ESA on 

the physical layer and fibre optic components by Patria Oy, VTT, Fibre Pulse, INO 

and Gore [4][5]. Components have been selected and tested for flight applications. 

2 SPACEFIBRE CODEC 

The SpaceFibre CODEC [3] is responsible for the encoding and decoding of the data 

being sent over the communications link. A block diagram of the SpaceFibre CODEC 

is illustrated in Figure 1. 
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Figure 1: SpaceFibre CODEC Block Diagram 

SpaceWire Standardisation

42



3 PROTOTYPE IMPLEMENTATIONS 

Several SpaceFibre CODEC prototypes have been implemented by various 

organisations. 

3.1 ESA/UNIVERSITY OF DUNDEE 

University of Dundee have implemented several SpaceFibre prototypes. One of these, 

built for ESA, was integrated with the Fibre optic components provided by Patria and 

successful tests made at 2 Gbits/s over 100 m fibre optic cable. 

3.2 NASA GSFC 

NASA Goddard Space Flight Center (GSFC) implemented a SpaceFibre prototype 

and demonstrated it on the Max Launch Abort System (MLAS) [6]. 

3.3 JAXA 

JAXA have also implemented a SpaceFibre prototype. This uses the “Wizard link” 

technology from Texas Instruments which provides 8B/10B encoding/decoding and 

serialisation/de-serialisation. 

3.4 INTEROPERABILITY TESTING 

Interoperability testing between the JAXA prototype and the University of Dundee 

prototype revealed some problems which are believed to be related to the use of the 

Wizard link device. The SpaceFibre specification will be altered to permit the use of 

the Wizard link as the lower level of the CODEC, as this is technology is available in 

a radiation tolerant device. Further interoperability testing is planned for later in 2010. 

4 SPACEFIBRE QUALITY OF SERVICE 

The SpaceFibre CODEC provides the basic means of transferring data over a 

SpaceFibre link, with data frames being used as a means of multiplexing several 

different data streams over the one physical link. To support several data streams 

running over the one link, virtual channels are provided as illustrated in Figure 2. 

Data to sent over the SpaceFibre link is written into one of the virtual channel transmit 

buffers (VC TX Buffer). There is a separate virtual channel for each “stream” of data 

being sent over the network. The “stream” may contain individual commands, packets 

of data, or continuous data streams. The local system may use several virtual channels 

to send different types of data over the SpaceFibre network. There may be data 

waiting to be sent in several of the VC TX Buffers. The medium access controller 

(MAC) determines which VC TX Buffer will be allowed to send data when the 

current data frame has finished being sent. To be allowed to send data there must be 

data in the VC TX Buffer to be sent and there must be room in the corresponding VC 

TX buffer at the other end of the SpaceFibre link. Flow control information is passed 

from the VC RX Buffers at one end of the link to the MAC at the other end of the link 

so that the MAC knows which VC RX Buffer can accept data. If there is more than 

one VC TX Buffer with data to send with room in the corresponding VC RX Buffer, 

then a medium access policy will determine which of the VC TX Buffers is allowed to 

send data. SpaceFibre will support several QoS classes which drive the medium 
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access policy. These QoS classes include priority, bandwidth reservation and 

scheduled data transfer. A data retry mechanism is provided for each virtual channel 

which can be used to support reliable data transfer. 
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Figure 2: SpaceFibre Virtual Channels 

When a VC TX Buffer is given permission to send data it passes a data frame of up to 

256 bytes to the SpaceFibre CODEC for sending across the SpaceFibre link. The data 

is received at the other end of the link and passed via a data frame de-multiplexer to 

the appropriate VC RX Buffer. Data in the VC RX Buffers can be read by the local 

system. 

5 SPACEFIBRE APPLICATIONS 

SpaceFibre is being developed to support a wide range of spacecraft applications 

where high data rates are required. Specific applications include the interconnection 

of high data rate instruments to mass memory units, the transfer of data from the mass 

memory unit to the downlink telemetry system, and the multiplexing of data from 

several SpaceWire links over a single SpaceFibre backbone to reduce mass and power 

consumption. 

6 SPACEFIBRE CURRENT STATE 

The lower levels of SpaceFibre have been specified by the University of Dundee and 

a prototype SpaceFibre interface developed and tested. NASA have developed a 

prototype SpaceFibre system to this specification and tested it on the 

MAX Launch Abort System (MLAS) test vehicle. JAXA have also developed a 

prototype SpaceFibre system. QoS mechanisms for SpaceFibre are currently being 

defined and prototyped to provide a comprehensive capability set for future space 

missions. SpaceFibre is now being defined for use in several onboard applications 

including mass memory devices and DSP processors. SpaceFibre fills a growing gap 

in onboard communications links for spacecraft, which is being widened by the high 

data-rate demands of new instruments. 

SpaceWire Standardisation

44



7 REFERENCES 

1. S.M. Parkes. C. McClements and M. Dunstan, “SpaceFibre Outline 

Specification”, University of Dundee, 31st Oct 2007. 

2. ECSS Standard ECSS-E-50-12A, “SpaceWire, Links, Nodes, Routers and 

Networks”, Issue 1, European Cooperation for Space Data Standardization, 

February 2003. 

3. S.M. Parkes. C. McClements, M. Dunstan and M. Suess, “SpaceFibre: Gbit/s 

Links For Use On board Spacecraft”, International Astronautical Congress, 

Daejeon, Korea, 2009, paper IAC-09-B2.5.8. 

4. V. Heikkinen et.al., “Fiber-Optic Transceiver Module for High-Speed 

Intrasatellite Networks”, Journal of Lightwave Technology, Volume: 25  Issue: 5, 

May 2007,  page(s): 1213–1223. 

5. J. Toivonen, “SPACEFIBRE - High Speed Fibre Optic Links for Future Space 

Flight Missions”, Sixth International Conference on Space Optics, Proceedings of 

ESA/CNES ICSO 2006, held 27–30 June 2006 at ESTEC, Noordwijk, The 

Netherlands. 

6. M. L. Davis and G. P. Rakow, “MLAS SpaceFibre High-Speed Serial Gigabit 

Data Link Technology Demonstration”, NESC Request No.: 07-060-I Dec 17, 

2009, available from 

http://www.nasa.gov/offices/nesc/reports/spacefibre_tech_demo_prt.htm . 

 

SpaceFibre

45

http://spacewire.esa.int/content/Standard/ECSS-E50-12A.php
http://spacewire.esa.int/content/Standard/ECSS-E50-12A.php
http://www.nasa.gov/offices/nesc/reports/spacefibre_tech_demo_prt.htm


 

SpaceWire Standardisation

46



 

 

 

 

Test and Verification 1 

47



 

SpaceWire Test and Verification

48



NEW APPROACH AND TECHNIQUES 
FOR TESTING AND DIAGNOSIS OF SPACEWIRE NETWORKS 

 

Session: SpaceWire Test and Verification 

Short Paper 

Stéphane Davy, Jacky Rozmus, Matthieu Salanave, 

SKYLAB Industries, 42 avenue du Général de Croutte, 31100 Toulouse, France 

Frédéric Pinsard 

DSM/IRFU, Bât 141, CEA Saclay, 91191 Gif sur Yvette Cedex, France 

Mansour Talhaoui 

Aerospace Services International Company, 3 rue du romarin, Taieb M’hiri, Tunis, Tunisia 

E-mail: spacewire@skylab-corporate.com, pinsard@cea.fr, talhaouimansour@gmail.com 

ABSTRACT 
In this paper, we present a new testing approach and techniques for compliant 
SpaceWire1 devices and networks. This approach is based on the emulation principle 
by using both physical and virtual devices. The conducted work has been done with 
the collaboration of CEA and Aerospace Services International Company. 
Most of today’s remaining issues and bugs in relation to test and integration are 
usually due to incompatible hardware, or simply, software misunderstandings between 
distant engineering teams, a common situation in space projects. The idea here is to 
introduce a new concept for emulating SpW networks based on physical equipments 
and/or virtual nodes and routers. Each of them could be located either in the same 
laboratory or at different locations around the globe. As a result, troubleshooting is 
expected to be more efficient and can be performed at early stages of the 
development, therefore ensuring successful flight modules.  

After introducing the physical and virtual elements features which will act as SpW 
nodes for the network, the paper will detail the complete traffiController4SpW software 
suite and how its architecture and characteristics can speed up network dimensioning, 
software testing and validation in a given heterogeneous SpaceWire topology. The 
software can actually be very flexible, allowing substantial freedom of use, not just 
for potential 4SpW products users but also for SpW users without hardware equipment 
and theoretically for any type of SpW test equipment. 

NETWORK PHYSICAL DEVICES 
One main element of the test bench is the PCI4SpW product: a PCI board with four 
SpW nodes, using CEA IP core. In addition to being able to transfer data with flexible 
configuration for each port, it provides standard and high-resolution time-codes 
capability. A SpW conformance testing feature is also present in the FPGA System on 
Chip, providing means to test robustness of any IP core. The PCI driver which is 
provided with the board can handle different data formats, depending on the project’s 
performance and software constraints. Two main data transfer formats are available: 

- A short format: one 9bit SpW characters is stored over a single 16bit word. 
- SpaceWire Interpreted Protocol format (SIP): 

o Data_8 format: limited to 256 values: one byte per SpW character. 
o Data_32 format limited to FIFO size of hardware: 4 SpW characters 

per 32bit word. 
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Regarding memory capacity, the PCI board features a local and configurable 32K x 
36bit SRAM memory dedicated to incoming data while a dedicated non-configurable 
28KB of FPGA block-memory can be used for outgoing data. A PCI4SpW emulator has 
been implemented in order to anticipate the board delivery during SKYLAB early 
software prototyping, and can now act as a physical device emulator. 
The other key element of the test bench is the smartCable4SpW product: a USB High-
Speed single SpW node miniaturized device, overmolded with a male microD9 
connector. It can act as node-to-node analyzer as well, using a dedicated plug (spy 
mode). It provides oscilloscope and logical analyzer capability, with possible 
buffering into the main 512Mbit DDR SDRAM. In addition, a custom LVDS eye 
diagram feature is available in the electronic device. The smartCable driver can 
handle enough bandwidth for most of the projects’ constraints. During the smartCable 
prototyping validation, a throughput of 32MBytes per second uni-directionally was 
measured. SmartCable driver also provides implementation of hardware SIP format 
conversion for better processing efficiency: dedicated RTL modules actually ensures 
SIP to SpW decoding and SpW to SIP encoding in the smartCable System on Chip. 
Using dedicated routines of the API, the smartCable device also provides: 

- eye d iagrams for both incoming and outgoing Data+/- and Strobe+/- 
differential lines. The Analog to Digital converter used for processing the 
analog signals is a dual 11-bit ADC with a 900MHz bandwidth, for potential 
LVDS measurements up to the highest standard transfer speeds. A low noise 
multiplexing front-end ensures very low disturbances regarding SpaceWire 
lines. The eye diagram is accessible in the API through direct picture format 
and dedicated routine. 

- a digital oscilloscope function, providing useful serial data debug information. 
- an analyzer function (in spy mode only). The additional plug of the 

smartCable (a female to female-female assembly which can be plugged to the 
male connector) reconfigures the FPGA of the USB bridge into receiving-only 
lines, providing a non-intrusive analyzer for two potential communicating 
nodes of, for example, a given set of space equipments.  

CompatibleCable4SpW products have been used with 10-meter Ethernet cables in 
order to interconnect PCI devices at a transmit clock speed of up to 200MHz. A third 
possible test equipment for the test bench, the PCI Express4SpW board, could not be 
used for this set of testing because it was still under validation at the time of writing 
this paper. However, data transfers from PCI Express to SpaceWire have been 
successfully tested on the prototype model by CEA/IRFU. The test results for this 
board are promising and the board is set to provide high-performance transfer, 
especially because of the theoretical multi Gbps throughput of the PLX device 
associated with the performances of a Virtex 4 device, all two consistent with more 
demanding ground and space applications. A PCI Express4SpW emulator has been 
developed in order to anticipate the board availability and can act as a physical device 
emulator as well, as previously described for the PCI board.These three physical 
devices can be managed by the traffiController4SpW software suite, in order to be 
controlled and used as SpW nodes for transmitting and receiving data. RMAP, as 
described in ECSS-E-ST-11C, can be associated to each of these physical nodes.  

NETWORK VIRTUAL DEVICE 
In addition to this set of hardware, traffiController4SpW is also capable of managing 
virtual devices. These consist of the following elements, which use files for dump and 
load of data: 

SpaceWire Test and Verification

50



- virtual nod e: a SpW object-oriented element providing communication features, 
not related to any particular hardware, but dealing with data to and from a text file. 
Virtual nodes can communicate with real or emulated nodes from real or emulated 
hardware. They can also be virtually connected to one virtual router port (see 
hereafter). 

- emulated smartCable, emulated PCI, emulated PCI Express devices: emulated 
object-oriented elements providing features equivalent to the real hardware, with 
degraded performances, also dealing with input and output files. These emulators 
provide emulated nodes for the SpW network, with more faithful characteristics 
and API methods regarding SKYLAB 4SpW products. 

- virtual router, allowing SpW routing, 
whose implementation is inspired 
from the SpW 10x device, as 
described in its User Manual2 and 
which supports Group Adaptative 
Routing. It can be configured with up 
to 31 ports and can be controlled via 
RMAP port number 0. 

- virtual l ogical an alyzer, which can 
be inserted between nodes of any kind 
(physical, emulated, virtual) or router 
ports, allowing data to be monitored 
or stored for debugging purposes. 
Four modes are available: step-by-
step, blocking buffer, non-blocking 
buffer and continuous modes. 

- IP tunnels, which can be used to 
connect multiple API locally or 
through an intranet/internet 
network. These IP tunnel use a 
peer to peer architecture. 

Figure 1: virtual SpW network and IP tunnelling 

TRAFFICONTROLLER4SPW ARCHITECTURE OVERVIEW 

As previously described, the software suite enables space industry engineers to use network 
physical devices and network virtual devices. Emulated and real nodes are accessed through 
the Device Virtualization Service (DVS) layer, the lower layer of the traffiController4SpW 
package. Virtual nodes are managed at API level, providing the rich set of communication 
elements for network routing and analysis, with the capability to transfer data through multiple 
tunnels. Additionally, Graphical User Interface (GUI) and console applications provide 
intuitive interaction with lower layer services. Each of these nodes (virtual, emulated and real) 
are accessed through DVS, whose architecture was inspired from the CCSDS SOIS PnP 
spatial related architecture3. More detailed information on DVS, API and GUI 
implementations is available online in the traffiController4SpW product datasheet. 

SPACEWIRE NETWORKS TESTING AND DIAGNOSIS: TEST CASES 
Using previously described software and hardware resources, we could setup a reconfigurable 
emulated SpW network using multiple nodes potentially dispatched between Saclay (CEA), 
Toulouse (Skylab) and Tunis (ASIC) geographical sites. Such a test bench gave us flexibility 
to be able to configure sub-networks using virtual routers within the overall network. In the 
next test cases, we consider such a testing configuration based on a local API 0 configuration 
and a distant API 1 configuration, whose characteristics are described in Figures 3 and 4 
below, with the related GUI screen copies. Note: ‘T[]’ stands for Tunnels in the related boxes. 
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Figure 2 : API 0 configuration (local)  

 
Figure 3 : API 1 configuration (distant) 

These test bench configurations have been used to perform a few dozens of test scenarios 
which are summarized in the following three categories, according to their complexity: 

1. Direct connection between nodes, with or without RMAP capability 
2. Connection through just one router: many tests have been run using: (a) logical or 

physical addressing, (b) with or without RMAP, (c) router configuration packets 
3. Connection through more than one router: same as above using intermediate routers 

All these tests have been performed successfully using either a stand-alone configuration (API 
0 and API running on the same PC) or a distributed configuration (API 0 and API running on 
different networks). For each of these tests, error codes processing have been treated to be able 
to handle bad commands, such as RMAP over SpW errors. The following are examples of test 
cases that were carried out: 

• Test 1
• 

: Packet exchange between two remote nodes through a local and a remote router 
Test 2

• 
: Configuring a remote router 

Test 3: Using the analyzer function in Blocking Buffer mode 
Test1

Virtual Node 0 with ID 0x36 was selected to send various lengths and types of SpW data with 
the following specific physical addresses header: 0x07 0x01 0x03. When routed by Router 
0x00, data were sent through the API tunnel T[1] with ID 0x3A, arriving Port 5 of Router 
0x01 API 1, routed to port[1], routed to port[3] of Router 0x00 API 1 finally reaching 
emulated smartCable ID 3 of the API 1. 

: The objective was to enable the transmission and reception of data between two remote 
nodes through a local router and a remote router. The test case was to send data from the 
output file of Virtual Node 0 of API 0 while receiving them in the input file of the emulated 
smartCable of the API 1, located on anothercomputer. 

Test 2: The goal was to setup a router register using a Write Single Address RMAP command. 
The test case intended to configure Router 0x0 of API 0 from emulated smartCable 0. 

 

As described on the left, a Write Single 
Address RMAP command could be sent 
from the Test Node window and checked 
that it was performed correctly by viewing 
the response in the Raw Data tab. The 
content of the register located at address 
0x20 of the router could be checked as 
described in the following screen-copy. 
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Test 3

To illustrate the functioning of the Blocking Buffer mode, we considered theses hex frames:
  Frame 1: 03 03 3d 20 55 01,    03 05 9f f2 54 4a f2 01 

: The objective was to use the logical analyzer in Blocking Buffer mode, with a fixed 
buffer size of 50 bytes. The two following possibilities were considered: sent data length less 
than buffer size, then sent data length greater than buffer size: in this case, only the first 
frames had been recovered during the first reading. The normal behavior was that during this 
time, the next frame was on a pending state for the buffer release. All other sending attempts, 
after the buffer was full, had been ignored. 

Frame 2: 03 08 0d 40 6b 97 7c 8a 29 89 01, 03 08 f9 a3 04 90 a9 8b 00 e7 01 
Frame 3: 03 08 37 7d fc 93 55 5c 9b 1d 01,  03 08 7a 3a 81 c6 93 10 4c 04 01 
Frame 4: 03 08 14 db 64 c6 d1 db 81 24 01, 03 06 a8 5c f7 53 a5 3d 01 

The test was divided into three sequences:  
- First transaction: 1st and 2nd frames were sent, as logged on the left window below. 
- Second transaction: 3rd frame was then sent, as logged on the right window. 
- Third transaction: 4th frame was transmitted (no log shown). 

   
The first two frames were normally analyzed (sent data length is 36 less than 50 bytes). The 
second transaction was also analyzed because 3rd frame data was in pending mode. After 
completion of the first transaction, the available space in the buffer was only (50 – 36 =) 14 
bytes and since the 3rd frame contained 22 bytes, it was immediately placed in a pending state 
to prevent data loss. The third transaction failed to be analyzed because the buffer was already 
full and there was another pending frame. This behavior complies with Blocking Buffer mode. 

CONCLUSION 
The paper introduced in details basic elements in test bench, typical API configurations and 
unitary/robustness tests and integration results of the test bench. The configuration aimed at 
representing most of the realistic scenarios met by node-to-node SpW users, router users and 
software developers. Most of these tests were conducted using representative emulators when 
drivers for physical devices were not yet available. Unfortunately, due to late driver validation 
for the smartCable and the unavailability of certain features like eye diagram or physical 
logical analyzer, unitary tests for these features could not be done and performance tests for 
this device with the traffiController could not be performed. However, in addition to the final 
PCI and smartCable performance tests, additional measurements will be done in the coming 
months with the new PCI Express equipment, giving complementary results to this approach. 

REFERENCES 
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Abstract 
We use SMAT to design a model for the prototype of satellite data management 
system based on SpaceWire. This model is capable of dealing with situation where 
data rates vary in a large scope and space data systems in accordance with CCSDS 
international standard have multiple transaction structures. We use this model to make 
simulations of SpaceWire with the features of high speed transmission, network 
routing and redundance in linkage. In order to examine the feasibility of our 
experiments and the system performance, we make tests to provide system designers 
with more quantitative evidences. 

1．Introduction 
The tasks of Satellite data management system include program control of 

satellite, command delay, Payload Operation and Management, systems on satellite, 
and etc[1]. The AOS standard of Consultative Committee for Space Data Systems
（CCSDS）integrates multiple data into a satellite data network, and it provides three 
services including data management, data routing and data transmission channel. 

SpaceWire is being used successfully on many space exploration missions[2][3]. 
However, there are several problems SpaceWire must face in the design of a practical 
satellite data system, such as what kind of topological structure can improve 
efficiency and reliability of data exchange [4]. 

However, research of the problems above cannot rely on the actual network 
construction [5]. It is difficult to complete the research of performance and parameter 
test above in a relatively fixed physical network. While system simulation is a very 
good research means to resolve these problems. 

2．Technique and Tools for Discrete Events Simulation 
Based on the objective of system analysis, the system simulation establishes a 

simulation model which can describe the system structure or process of action and can 
be expressed by some logic or mathematical equation on the basis of analyzing the 
nature and relationship of the elements in the system. Accordingly, Experiments or 
quantitative analysis are made to obtain all the information required for proper 
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decision-making. By the simulation model, system simulation can successfully solve 
the system problems such as forecasting, analysis and evaluation for some object 
systems which are difficult to establish the physical and mathematical model. 

Based on the OMNET++, we developed the System Modeling & Analysis Tool. 
The tool can do the analysis, quantitative evaluation, validation and optimization for 
the system-level design. The whole process of system simulation is also supported by 
the tool.  

3．System Modeling 
Satellite Conventional Orbiting System (COS) is composed with five units 

including Central Control Unit (CTU), Telecommand Unit (TCU), Telemetry Unit 
(TMU), Attitude & Orbit Control Circuit (AOCC) and Remote Terminal Unit (RTU), 
all of which are connected with serial bus (Bus 1553 in practice). 

CTU is in charge of transaction management, bus dispatch, etc of satellites. TMU 
is designed to collect real-time telemetering data from sub-systems and send them into 
downlink virtual channels and to the surface through channel S, while generating 
delayed telemetering packages according to specified sampling rates. TCU sends 
indirect remote instructions to devices respectively through uplink virtual channels, 
RTU is used to carry platforms and actual payloads from which large amount of data 
generated is sent to the surface through wave band “Ku” by specified devices. The 
diagram below demonstrates the structure of COS model. 

Since CTU, TMU and TCU are different units taken from one single CPU, and 
the amount of uplink data is small, the uplink part with mono functions can be 
facilitated into remote instruction generators. The CTU and TCU are integrated into 
TMU. 

1553bus

RTU1 RTU2 RTU3 RTU4 RTU5 RTU6AOCC

TMU

RAM
Vrtual Channel

Synchronous
Transmitter

S Channel
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With SpaceWire and FPGA, the bottleneck of application in AOS can be solved. 

The diagram above demonstrates how to use SMAT to build a SpaceWire and FPGA 
based AOS downlink model, in which all routers are SpaceWire based, Router1 is in 
full-duplex mode, Router2 and Router3 are in simplex mode, TMU is the real-time or 
delayed telemetering data collect unit, and Multiplexer is combiner.  

3.1 Data Source Model 
In satellite electronic devices, all payloads units, telemetering units and 
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telemetering units can be seen as data generators (data sources) obeying specified 
rules. AOS system is made up with eight transaction modules including routing 
module, internet module, package module, multiplex module, bit-stream module, 
virtual-channel-access module, virtual-channel-data-unit module and injection module. 
SMAT provides data source modules for all AOS transactions. As the structure of 
routing transaction is extremely complex and this transaction involves communication 
between multi-system and multi-satellites, it is rarely used in practice. 

3.2 Router Model 
Each node of the router contains four ports: Data input port “In”, Data output 

port “Out”, Node-state port “Status” for the situation when sending data from one 
node to another node and the port “Busy” to set the node refuses to accept data. 

The module “Nod_In” receive data-input-request, if the output node being 
requested is servicing for the other input nodes, then return “Busy” flag, do not 
discard the data, enter the waiting service sequence，until the data is transferred then 
return “Finished” flag; If the corresponding FIFOBuffer of the output node has 
overflowed, then discard the data and return “Overflow” flag; Or else send the data to 
the corresponding module “Nod_Out”, set the flag to “Busy”, and then return 
“Finished” flag until receive the "No Busy" signal. 

The module “Nod_Out” transmitted out the data it has received, and then send 
“No Busy” signal to the module “Nod_In”. 

The Module "Error" produce interference signal according to the rules have been 
given, if detected signal “Noise” during data transfer process, then re-send the data 
and record the length of the re-send data simultaneously, to test fault tolerance ability 
of the router link-layer. 

3.3 TMU Model 
The Module “TMU ” collect telemetry data from each load, and then pack the 

data unit（E－SDU）, is arranged by byte and is not delimit by CCSDS structure ,into 
statute data unit E－PDU (CCSDS package) by fixed position . And then multiplexing 
with the other CCSDS packages to produce M-PDU package. And simultaneously 
extract data in the required Sampling rate, generate delayed telemetry data. For the 
data required real-time transmission, the “TMU” combined them into Insert data to 
generate IN-SDU. 

In addition to the functions mentioned above, the module “TMU” also 
distributed telemetry command (Telecommand) to the corresponding load units. In 
this experiment, "TC Generator" replaced the actual uplink telecommand based on the 
ground control rules and produce regular telecommand. 

3.4 Multiplexer Model 
The Multiplexer schedule the VCDU data units of all virtual channels，add 

current IN-SDU header and VCDU header，in this way generate the VCDU. If there is 
none of the VCDU data units in the virtual channels, we should fill “0” in the VCDU 
data units and generate a leisure data frame. Coding the VCDU or leisure data frame, 
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we can finally generate the PCA_PDU to be sent. 

4．Experiment Scheme 
Models of the system are all achieved by SMAT simulation tool. And the models 

are placed in the model library. Different simulation systems can be constructed 
according to the purposes of experiments. In this paper, the simulation system is 
composed by the data transmitter and data receiver. Before running the simulation 
model there are the following work needed to carry out: 

4.1 Verification of model accuracy 
The verification of the correctness of the simulation model is to test the model 

constructed which can really represent the basic performance of a real system (or the 
system designed) or not. The correctness validation process for the simulation model 
is a process of repeated comparisons between the model and practical system. And the 
difference generated by comparison is used to improve and modify the model in order 
to make the model gradually approach to the actual system. The process will not stop 
until the simulation model is recognized as the true representative of the real system. 

4.2 Confirmation of Data Payload 
In our simulation experiment, the primary objective is to add data payload to the 

model. Since the amount of data sources is huge, we pick up several transaction data 
to be the object in channel combiner according to the features of AOS and the need of 
our research. 

The table below shows the data sources employing AOS structure. 

4.3 Simulation Model Performance Statistical Index Architecture 
The final statistical indicators of performance extracting from our simulation 

experiment are composed with: 

N.o Data source Service type Affiliated 
Data length 

(Bytes) 
Speed 

(Mbit/s) 

Distrib
ution 
(s) 

Virtual 
channel 

1 Camera 
B_PDU 

RTU2 － 150  2 
2 Env_Science RTU3 － 50  2 
3 Mat_Science 

VCA_SDU 
RTU4 － 30  3 

4 Life_Science RTU5 － 20  3 
5 TV Video*3 B_PDU RTU6 － 2.048  4，5，6 
6 EngineeringTM 

Package、
multi 

duplicate 

AOC 131934 - 4 0 
7 Audio RTU6 15360 - 2 0 
8 Delay TM ALL Sampling -  1 
9 TM*7 ALL 40 - 0.512 0 

10 Power AOC 80 - 0.512 0 
11 Self_manage RTU1 10 - 0.512 0 
12 Insert IN_SDU  64 - - 0 
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 Data transmitting availability of downlink channel 
 Data transmitting immediacy 
 Data capacity 
 Data transmitting fault tolerance 

4.4 Confirmation of Experiment Scheme 
In this experiment, the model designed on the system’s every function is 

followed AOS system architecture’s function and target. The algorithm of the virtual 
channel schedule is a key points of the AOS channel combiner. A reasonable schedule 
algorithm is a assurance that AOS channel combiner will finish each complex task in 
order. The efficiency of the algorithm will make great affect on the system. In the 
modeling course, we compared several schedule and finally take the schedule of 
priority and overtime, which take the longest delay time as the standard of the transfer 
in real time. 

We analyze downlink channel data transmission availability, data delay, data load 
capacity and data effective transmission rate with interference, which are captured in 
our experiment. Then we compare our results with the simulation outputs taken from 
conversional satellite orbiting system, while we can see the performance is improved 
in many aspects. Furthermore, utilizing the SpaceWire routers and without high speed 
CPU (DSP), it is feasible to break through the restriction of data stream, realize the 
design plan of AOS system, and improve the fault tolerance in the link layer.  

5．Summary 
We in this paper suggest a method to implement AOS system with SpaceWire 

routers, and make simulation experiment using real data source with our designed 
system model. The experiment shows the bottleneck in AOS system (low throughput 
capacity and low CPU speed) can be eliminated with the deployment of SpaceWire 
routers. By adjusting the topology structure, we can get system performances with 
different topology and same data payload, and thus optimize the system design. 
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ABSTRACT 
The 4Links family of SpaceWire test equipment has been built over many years, and 
this paper will consolidate and update what has been presented at past ISC 
conferences and at SpaceWire Working Group meetings. The family consists of 
interfaces, monitors, and instrumented simulators, and a synchronization interface to 
absolute time. Versions are available with or without extensive instrumentation for 
measuring time and performance, and with or without synchronization across a 
complete SpaceWire test set. The equipment has been used for a wide variety of 
applications and some of these user scenarios will be described. 

1 INTRODUCTION: THE 4LINKS FAMILY OF SPACEWIRE TEST EQUIPMENT 
The 4Links family of SpaceWire test equipment started with the PCI-1355 board in 
1997, which was used by ESA and several of the companies with early interest in the 
technology that evolved to SpaceWire. PCI-1355 was built with Inmos C101 chips, 
and the SpaceWire-PCI followed in 2000 using the ESA-sponsored SMCS chips. The 
SpaceWire-PCI board was widely used, by ESA, by NASA, and by many companies. 

1.1 BENEFITS OF INTERFACING VIA ETHERNET AND TCP/IP 

4Links introduced the first Ethernet/TCP/IP-based SpaceWire test product in 2004, 
and has built a comprehensive family that is regularly acclaimed by its users for its 
quality and usefulness. 

Ethernet and TCP/IP are provided with every main-stream operating system and the 
user has no need to install, and keep updated, any other driver software. Users are able 
to work remotely, with the benefit of running the tests from the office instead of the 
clean room. Remote working can even extend to other countries and continents, and 
4Links equipment has been used in this way to help users to diagnose problems.  

The Ethernet/TCP/IP based test equipment family consists of interfaces, monitors, 
instrumented simulators, and a synchronization interface to absolute time. The 
products are accurate, reliable, use a uniquely mature synchronous SpaceWire Codec, 
and include failsafe measures to protect flight equipment from faults. 
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2 INTERFACES FROM A COMPUTER TO SPACEWIRE 
A range of products offer a choice from a simple interface with one SpaceWire port to 
a full diagnostic interface with up to eight ports, and a new Wireless interface.  

The EtherSpaceLink provides a single active SpaceWire port. This can be in a single 
port unit, or can be software selectable from up to eight physical SpaceWire ports.  

The EtherSpaceLink proved its worth immediately. A test with one of the agencies, 
just before silicon tape-out, exposed a lost byte under certain conditions. Another 
early user needed the PC to run Real-Time Linux, and problems with a USB interface 
caused delays. The EtherSpaceLink ran immediately and progress was resumed. 

The EtherSpaceLink has recently been upgraded to generate a Time Code from an 
external pulse or, as originally, from its internal clock.  

The Diagnostic S paceWire In terface is able to drive up to eight SpaceWire ports 
simultaneously and, as its name implies, includes comprehensive diagnostics. 

One device tested by the Diagnostic SpaceWire interface was ESA’s SMCS-SpW, 
unfortunately too late to prevent errors in the silicon. One of the errors seen could 
result in deadlock from a lack of flow-control credit, another was the delivery of a 
packet to the user despite there being a parity error in the packet and another was 
occasional failure to detect disconnection timeout as defined in the SpaceWire 
standard [1]. 

The Diagnostic SpaceWire interface is widely used for many purposes, including 
simulating, testing, debugging and validating both hardware and software of 
SpaceWire devices, boards, and subsystems.  

The use of Ethernet and TCP/IP allow 4Links equipment to be in the clean room 
while the engineers testing the satellite are outside the clean room. For planetary 
landers or rovers, the need for cleanliness is particularly acute. Having a SpaceWire 
WiFi In terface built into the satellite could avoid the need for any other test 
equipment to be in the clean room. Under an ESA project with SEA, 4Links built a 
concept demonstrator for such an interface, housing the SpaceWire interface within a 
COTS Access Point. This will be re-engineered as a commercial product.  

3 MONITORING, ANALYZING, TIME-TAGGING AND RECORDING SPACEWIRE 
Active interfaces, and the software supplied with them, permit extensive analysis of 
equipment under test. But when equipments are connected together, there is also a 
need for passive monitoring. Monitors include an Analyzer that gathers statistics of 
the traffic, and a Recorder that records the traffic. 

The Multi-link Spac eWire A nalyzer accumulates statistics of the SpaceWire 
characters flowing in each direction of the SpaceWire links. It is an “honest broker” 
between flight units, or between a flight unit and test software under development. It 
has quickly enabled the solution of problems that had been delaying projects. 

The Multi-link Spac eWire Recorder passively records traffic in each direction on 
each link. All the recordings are time tagged, and multiple recorders can be 
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synchronized so that recordings on different computers and different discs all have 
consistent time tags. The recorder is used for debugging higher level system 
behaviour, and for archiving the results of extensive tests. Recordings can be of any 
size, limited only by the disc capacity. 

4 INSTRUMENTED SIMULATORS 
The Flexible SpaceWire Router can be used as a packet routing switch, but also as a 
static routing switch, a mux/demux (concentrator/deconcentrator), as multiple small 
switches or one large switch comprising several units. It is also instrumented to 
provide analysis of traffic through the switch.  

The SpaceWire RMAP Responder simulates instruments and memories that respond 
to RMAP commands. The memory accessed by the RMAP commands on each port is 
managed by the user from a PC. Response is exceptionally low latency (single-digit 
micro-seconds). Other protocols such as CCSDS packets, interleaved between RMAP 
packets, are passed transparently to and from the PC.  

The Absolute Time Interface synchronizes a test system to the IRIG time standard, 
and provides a source of low-jitter Time Codes. Synchronization to IRIG is accurate 
to within far less than one microsecond, and synchronization between 4Links test 
units is of the order of ten nanoseconds. With synchronization to IRIG, time tags 
include both the date (day of year) and an indication of the accuracy of the time.  

5 CAPABILITIES AVAILABLE ACROSS THE PRODUCT FAMILY 
Versions of the products are available with or without extensive instrumentation for 
measuring time and performance, and with or without synchronization across a 
complete SpaceWire test set. These capabilities include: 

• Error Injection, for testing the correct response to such errors 
• Error Reporting, included in most products, but not always needed  
• Event/Error Waveforms, invaluable for hardware debug 
• Packet Statistics, simple, accurate, information independent of user software 
• Synchronized Outputs, necessary for testing arbiters in routing switches 
• Time Tagging, necessary for any time-dependent activity 
• Time Code generators, autonomous, accurate, low jitter 
• Hardware synchronization between units, essential for real-time system analysis 

 

6 USE SCENARIOS 
4Links test equipment addresses a wide range of user scenarios including testing and 
validating new designs, measuring performance under varied operating conditions, 
simulating units controlled by an OBC, and archiving the results of a long series of 
tests. These scenarios exist both with individual test units for a single subsystem and 
with many synchronized units for a complete mission. Examples are testing a routing 
switch, testing real-time protocols, and re-use of equipment for different tests. 
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6.1 TESTING A ROUTING SWITCH 

Routing switch tests need to include synchronized packets with controllable offsets 
arriving at the routing switch, testing with several patterns such as all ports accessing 
the same port, each port accessing a different port, and random addressing, data, and 
packet lengths. 
 
Such tests can be performed by a set of synchronized Diagnostic SpaceWire 
Interfaces, all driven by a single computer or each by a separate computer. Test unit 
synchronization enables the headers of all the packets to be aligned within a few 
nanoseconds, and time tags are matched so that records of the tests made on different 
computers can all be correlated with respect to time.  

6.2 REAL-TIME PROTOCOLS 

Real-time protocols need an accurate source of Time Codes. Such Time Codes can be 
generated either by the Absolute Time Interface from IRIG, or by the EtherSpaceLink 
interface. 

The actual times of the real-time protocol packets, and of real-time events generated 
by them, can be recorded by one or more Multi-link SpaceWire Recorders, 
synchronized to the Time Code source and to each other. 

6.3 RE-USE AND SPARES 

During a project, the needs for test can change from needing active interfaces for test 
to using monitors for integration. The family of 4Links test equipment is based on a 
small set of hardware platforms which are customized to a particular product function 
by an exchangeable memory card. A hardware platform can be used with a variety of 
different memory cards. This can be useful, for example, to turn an interface used for 
testing early in a project into a monitoring recorder when the flight equipment is being 
integrated. It can also be useful to have a spare hardware platform — with memory 
cards for all the functions used in a test bench — as a standby unit, greatly reducing 
the cost of spares. 

7 CONCLUSIONS 
A wide range of SpaceWire interfaces, monitors, and instrumented simulators has 
been described. Users have found these interfaces highly effective in exposing 
previously undetected design anomalies, of quickly diagnosing and fixing such 
anomalies, and hence overcoming obstacles to progress. The range includes functions 
that can be used at all the stages of development through to integration. The hardware 
platform can often be re-used to minimize cost over the mission life-cycle. The 
quality and effectiveness of the equipment encourages feedback from users on 
potential improvements. Many of the capabilities described have resulted from such 
feedback, and the authors acknowledge and thank those who have provided it. 

8 REFERENCES 
1.  “ECSS-E-ST-50-12C 31 July 2008, SpaceWire - Links, nodes, routers and 

networks”, published by the ECSS Secretariat, ESA-ESTEC, Requirements & 
Standards Division, Noordwijk, The Netherlands 

SpaceWire Test and Verification

64



 

 

 

 

Test and Verification 2 

65



 

SpaceWire Test and Verification

66



SPACEWIRE LINK ANALYSER MK2: A NEW ANALYSIS DEVICE FOR 

SPACEWIRE SYSTEMS 

Session: SpaceWire Test and Verification 

Short Paper 

Pete Scott, Chris McClements, Stuart Mills 

STAR-Dundee,  
c/o School of Computing, University of Dundee, Dundee, DD1 4HN, Scotland, UK 

Steve Parkes 

School of Computing, University of Dundee, Dundee, DD1 4HN, Scotland 
E-mail: pete@star-dundee.com, chris@star-dundee.com, stuart@star-dundee.com,  

sparkes@computing.dundee.ac.uk  
 

ABSTRACT 

The process of testing, validation and verification of a SpaceWire network [1] benefits 

from the ability to analyse the traffic passing over a SpaceWire link and to monitor its 

status.  This paper gives an overview of the capabilities of two STAR-Dundee 

products which perform this important task: the SpaceWire Monitor and SpaceWire 

Link Analyser.  Both of these devices’ functionality is combined into a new product; 

the Link Analyser Mk2, which features interfaces to both a Logic Analyser and a 

Personal Computer (PC), external triggering capabilities and a large memory for 

capturing decoded data.  Software running on the PC is capable of interpreting data 

captured by the Link Analyser Mk2 into a user-defined protocol. 

1 INTRODUCTION 

A typical SpaceWire system may consist of many SpaceWire components from 

different sources connected together through a network of routers and links which are 

often duplicated for redundancy.  The testing, validation and verification of simple 

point to point connections or complex networks call for a tool to analyse the data 

flowing at any given time across a SpaceWire link. 

2 EXISTING SPACEWIRE LINK ANALYSIS TOOLS 

2.1 SPACEWIRE MONITOR 

The SpaceWire Monitor [2] used together with a logic analyser provides a means of 

analysing the traffic flowing through a SpaceWire link.  Figure 1 illustrates how two 

SpaceWire cables are used to connect the SpaceWire Monitor across a link to be 

monitored.  The Monitor decodes the characters and symbols passing bi-directionally 

across a link and provides direct indication of link status and traffic flow on a series of 

LEDs.   
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Figure 1: Using a SpaceWire Monitor and logic analyser to analyse a SpaceWire link. 

For a deeper insight into the link under test, a logic analyser may be interfaced to the 

monitor to record the decoded values of characters and symbols as shown in Figure 2. 

  

Figure 2: A SpaceWire ink during data transfer (left) and link start-up sequence (right). 

The SpaceWire Monitor lacks external trigger signals to interface to the logic 

analyser.  Triggers can only be programmed into the interfaced logic analyser and 

errors latched onto the relevant indicator LEDs. 

2.2 SPACEWIRE LINK ANALYSER 

The STAR-Dundee SpaceWire Link Analyser [3] provides link monitoring and 

analysis capabilities with inbuilt logic analysis functionality. It is connected across a 

SpaceWire link in a similar fashion to the SpaceWire Monitor.  A host PC is 

interfaced to the Link Analyser via a high speed USB 2.0 interface shown in Figure 3. 

 

Figure 3: Using a SpaceWire Link Analyser and PC to analyse a SpaceWire link. 
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Data passing across a link under test are decoded into characters and symbols which 

are recorded into the Link Analyser memory.  Software running on the PC is used to 

configure a sequence of triggers in the Link Analyser to activate on a change in state 

of the link status and/or a series of characters flowing over the link.  Statistical 

information on the level of traffic through the link is continuously gathered and 

displayed on the host PC as shown in Figure 4. 

 

Figure 4: Display of link level activity and statistics of analysed link activity. 

The Link Analyser is capable of monitoring, tracing and recording traffic at the link 

level to confirm link start-up, flow-control, data transfer and error recovery.  Data can 

be monitored, traced and recorded at the packet level to confirm the response of a 

system to packet errors and the control of SpaceWire systems using control packets.  

The link and packet level data is shown in Figure 5. 

 

Figure 5: Display of packet level trace of analysed link activity. 

The Link Analyser has enough memory to bi-directionally record 8,000 events.  This 

can prove a limitation if a great deal of data needs to be analysed either side of a 

trigger event. Data filtering capabilities are provided in the Link Analyser to make 

maximum use of the available memory. 
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3 INTRODUCING THE SPACEWIRE LINK ANALYSER MK2 

The SpaceWire Link Analyser Mk2, shown in Figure 6, combines the functionality of 

the SpaceWire Link Analyser and SpaceWire Monitor by providing both a USB 2.0 

interface to a PC and ports suitable for interfacing to major logic analyser brands.  It 

features two external trigger ports which can be independently configured as trigger in 

or out.  Onboard memory provides enough capacity to store 16 million events. 

 

Figure 6:  The STAR-Dundee SpaceWire Link Analyser Mk2. The front panel (top) features, 

from left to right, 2 triggers and 2 SpaceWire ports.  The rear panel (bottom) features, from left 

to right, 2 logic analyser ports, USB 2.0 connector and +5V power supply jack. 

Drivers and software provide compatibility with Windows and Linux.  The new 

software for the Link Analyser Mk2 builds on its predecessor by including the ability 

for the user to specify their own high-level protocols.  Figure 7 shows a sequence of 

packets interpreted into the Remote Memory Access Protocol (RMAP). 

 

Figure 7: Interpreting a recorded sequence of packets into RMAP. 
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4 CONCLUSION 

This short paper has given a brief insight into the importance of link analysis and an 

overview of the SpaceWire Monitor and SpaceWire Link Analyser.  The SpaceWire 

Link Analyser Mk2 unites the respective PC and logic analyser interfaces of these 

devices.  It builds on these features by including 2,000 times the memory of the Link 

Analyser, a pair of external triggers and an enhanced version of software based on that 

of its predecessor.  The SpaceWire Link Analyser Mk2 is a powerful, flexible tool for 

testing, validating and verifying a SpaceWire system. 
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ABSTRACT 
When testing, validating and verifying systems, monitoring hardware can be used to 
observe and stimulate the components comprising the system under test. STAR-
Dundee is developing the next generation of the SpaceWire PCI board and a 
SpaceWire PCI Express board to observe and stimulate up to four independent 
interfaces that implement the SpaceWire protocol. This paper describes the 
architectures of the Spacewire PCI-3 board and the SpaceWire PCI Express board. It 
also briefly describes the associated host software and outlines the benefits of these 
architectures. 

1 INTRODUCTION 
Effective testing requires the ability to accurately monitor the operation of the design 
under test. Within the SpaceWire application domain, there are several products 
available for monitoring and stimulating the links that comprise a SpaceWire network. 
This paper describes two boards that complement the existing products from STAR-
Dundee and provide additional functionality to aid the designer while debugging their 
system. The boards being developed by STAR-Dundee are the next generation 
SpaceWire PCI board and the SpaceWire PCI Express board [1, 2]. 

2 SPACEWIRE PCI-3 
The STAR-Dundee SpaceWire PCI-2 interface card is a test and development 
platform for the SMCS FPGA device provided by Astrium [3]. The SMCS is designed 
to be a general purpose interface device but is not suitable for some applications 
which require high performance and responsiveness between the software running on 
the PC and the SpaceWire links on the device. 

The new STAR-Dundee SpaceWire PCI-3 interface, based on the existing hardware 
platform, provides new firmware which greatly improves the data transfer capabilities 
between the host system’s software and the SpaceWire interfaces. As illustrated in 
Figure 1, the PCI Interface provides four bi-directional channels which are directly 
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available to software running on the host PC. Each channel has individual buffering 
for efficient data transfer. A SpaceWire Router is also present, which adds a routing 
capability to the PCI card. Packets which are received on a SpaceWire port can be 
routed to another port or to the PCI interface. The SpaceWire router can also be 
configured to be bypassed by the SpaceWire interface so the card becomes an easy to 
use SpaceWire node with 3 interfaces. The extensive configuration capabilities of the 
SpaceWire router are available in both modes. 

3 SPACEWIRE PCI EXPRESS 
The new SpaceWire PCI Express board supports up to four SpaceWire links and 
consists of a SpaceWire router, on-board memory, a packet generator, a packet sink, 
multiple link monitors and upgradeable firmware, as illustrated in Figure 2. The board 
also employs a Direct Memory Access (DMA) engine for transferring data to the host 
computer. The maximum theoretical signalling rate for PCI Express is 2.5Gbits per 
second per lane for a 1st generation interface, which translates to 250Mbytes per 
second of transmitted data. However, the actual achievable data rates will be less due 
to the protocol overhead and software response time. 

The SpaceWire router provides four external ports and several internal interfaces in 
addition to the configuration interface. The four external ports are fully compliant 
with the SpaceWire standard [4] and provide direct communication over such links. 
The internal interfaces provide access to the on-board memory, the host computer and 
the configuration interface. The on-board memory is accessible over SpaceWire via a 
hardware packet sink, which records all packets written to it. The host computer can 
access the board via a device driver, which provides the interface between the host 
computer and the SpaceWire ports. The internal interfaces are also accessible over the 
SpaceWire network via the router. 

The on-board memory provides storage for all of the link monitors and the packet 
sink, which allows link activity to be recorded and statistical information to be 
gathered. The memory also contains an interface to the PCI Express bus so that data 
can be transferred to the host computer independently from the SpaceWire router. The 
link monitors can record many events as megabytes of memory are available 
providing significant temporal visibility. 

The packet generator is connected to the SpaceWire router and can send packets to 
any interface on the router. It is therefore capable of interacting with any component 
in the SpaceWire network. The packet generator shares some of the functionality 
provided by the STAR-Dundee Conformance Tester [5] and is compatible with the 
SpaceWire Validation Software [6]. For example, the packet generator can transmit 

Figure 1: Architecture of the SpaceWire PCI-3 board 
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predetermined packets or random data, while scheduling packets for transmission at 
specific times. 

The packet generator can write packets to any interface on the SpaceWire router, 
which allows the packet generator to write to the packet sink or the connection to the 
host computer and its associated software driver. This capability is useful for 
debugging software applications where the rate of incoming data affects the 
performance and behaviour of the software application. 

The packet sink is a SpaceWire interface to the on-board memory, which allows 
packets to be routed from any of the interfaces available on the SpaceWire router. 
Although the interface will block due to multiple packets accessing the sink 
simultaneously, there are no blocking delays caused by software. The operating 
system of the host computer and its application software are not involved in the 
operation of the packet sink and do not restrict the ability to receive packets. 

The packet sink complements the functionality found in the SpaceWire Validation 
Software. For example, the sequence number and checksum included within a packet 
can be verified as they are received. A set of statistics showing the rate at which 
packets are received and any errors encountered are also made available to the host 
computer. 

The link monitors observe both directions of each external SpaceWire interface while 
performing two key functions. First, they record packet activity on each of the 
external SpaceWire interfaces. Second, they capture statistical information from the 
traffic observed on each external SpaceWire interface. This statistical information 
includes packet transmission rates, link level events and observed errors. 

The link monitors present on the SpaceWire PCI Express board contain a subset of the 
functionality found in the STAR-Dundee SpaceWire Link Analyser but still provide 
many features that are beneficial for monitoring and debugging SpaceWire 
applications [7]. For example, the link monitors record packets entering and leaving 
the SpaceWire router and can highlight the exit path of each packet. This functionality 
could be used to verify that packets are being routed correctly. 

The PCI Express board uses firmware that can be upgraded in the field. The firmware 
can provide additional functionality for the SpaceWire router, packet generator, 
packet sink and link monitors. Most importantly the firmware will be upgradable over 

Figure 2: Architecture of the SpaceWire PCI Express board 
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the PCI Express interface, which allows the firmware to be updated from any location 

where the host computer is accessible. 

4 HOST SOFTWARE 

The SpaceWire PCI Express and SpaceWire PCI-3 devices will have drivers for both 

Windows and Linux operating systems and will use the new STAR-Dundee driver 

architecture and API.  The new API allows applications to work with any of the 

STAR-Dundee devices so that applications could potentially work with SpaceWire 

PCI Express, SpaceWire PCI-3, SpaceWire Router-USB and SpaceWire-USB Brick 

devices. The new API also provides reusable components to provide features such as 

Plug and Play (PnP) and RMAP targets and initiators, so the PCI devices can respond 

to PnP requests [8], for example. STAR-Dundee’s existing applications will work 

with both PCI devices. 

5 CONCLUSION 

This paper has described the architecture of the next generation SpaceWire PCI and 

SpaceWire PCI Express boards being developed by STAR-Dundee. The benefits of 

both boards have been presented and the enhanced test capabilities of the SpaceWire 

PCI Express board have been described.  
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ABSTRACT 
A simplified On-Board Data Handling system has been developed by CAEN 
AURELIA SPACE and ABSTRAQT as PUS[1] over SpaceWire demonstration 
platform for the Onboard Payload Data Processing laboratory at ESTEC. The system 
is composed of three Leon2 based IPPM (Integrated Payload Processing Modules) 
computers that play the roles of Instrument, Payload Data Handling and Satellite 
Management units. Two PCs complete the test set-up simulating an external Memory 
Management and the Ground Control units. Communication among units take place 
primarily through SpaceWire links, RMAP[2] protocol is used for configuration and 
HK. A limited implementation of ECSS-E-70-41B Packet Utilisation Standard (PUS) 
over CANbus and MIL1553 has been also realized. The Open Source RTEMS has 
been running on the IPPM AT697E CPU as RTOS. 

IPPM DEMONSTRATION SYSTEM OVERVIEW 
The demonstration platform has been designed in order to emulate a simplified 
On-Board Data Handling System. It consists of three equivalent IPPM and two 
personal computers. The demonstration architecture is depicted in Figure 1, where a 
Windows based PC acts as a Ground Control Unit (GCU), while a second PC 
simulates an external Mass Memory Unit (MMU) and each IPPM module emulates 
the different components of the on board system: 

• An Instrument Unit (IU) plays the role of a scientific instrument that generates data 
to be processed by the payload data handling unit. The IU simulates an on-board 
camera and generates raw images data and supports a limited set of PUS services, 
which allow starting and stopping images data generation. 

• A Payload Data Handling Unit (PDHU) manages instrument data incoming from 
the Instrument Unit. Data are stored by PDHU into a Memory Management Unit 
(MMU) simulated by a Windows based PC. The PDHU is able to store the data in 
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both raw and compressed format (JPEG). Compressed data are downloaded to the 
Ground Control Unit after request. 

• The whole IPPM on-board system is managed by a Satellite Management Unit 
(SMU). This module sends and receives messages to and from the ground control 
unit and the other IPPM boards. The SMU provide a delayed Telecommands 
scheduling service and it is in charge to distribute a time synchronization signal to 
the other boards by means of SpaceWire Time-Codes 

 

 

Figure 1: On-Board Data Handling System demonstration architecture 
 

The three IPPM boards involved in the system are custom low power computers 
based on LEON architecture and running RTEMS as operating system. Each board 
has a large amount of on-board memory and wide networking resources such as high 
speed SpaceWire links and, in addition, CAN and MIL-STD-1553 bus interfaces 
designed to distribute low and medium rate command and control signals. 

In the frame of the activity a portable SW library has been developed which supports 
RMAP transactions and a subset of PUS services. The library provides a platform 
independent interface to the underlying hardware. All of the three boards run both 
Housekeeping and Time Synchronization processes: the first process deals with 
measuring and collecting information about the status of the system, while the second 
has been designed in order to maintain the clock of both the IU and the PDHU 
synchronized with the clock of the SMU. The IU runs a camera emulator process that 
transfers raw image data to the PDHU using PUS Large Data Transfer service. The 
PDHU stores the received data into the MMU exploiting the RMAP features provided 
by the software library. An Off-line compression process is in charge to compress the 
raw images into a dedicated channel of the MMU, while a Data Downlink process 
download the compressed images to the ground control unit where can be displayed 
through the GUI. The SMU has a direct SpaceWire link to the ground control unit. 
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INSIDE THE INTEGRATED PAYLOAD PROCESSING MODULE 
The Integrated Payload Processing Module (IPPM) is a single module self-contained 
computer based on RISC CPU, equipped with a large amount of memory on-board 
and having a wide inter-networking capability. 
 

 
Figure 2: IPPM block diagram 

 
The LEON2 CPU controls the PROM, SRAM and SDRAM components through its 
memory bus that is also connected to the ICCU FPGA. The ICCU, that internally 
bridges the memory bus to the FLASH interface, keeps the ownership of the FLASH 
interface to manage the on board programmability. Data exchange between LEON2 
and ICCU takes place on the PCI bus, while ICCU and UoD_SpW-10X router 
communicate through the data dedicated ports. 
The wide IPPM inter-networking is guaranteed by 8 SpW links, connected to the 
UoD_SpW-10X router, two different CAN buses and a MIL-STD-1553B peripheral 
block capable of 1553 Bus Controller, Remote Terminal or Bus Monitor 
functionalities. 

ARCHITECTURE OF THE IPPM SOFTWARE LIBRARY 
The IPPM software library provides an object-oriented abstraction for both PUS and 
RMAP standards. The library is organized in different layers to provide a uniform 
platform-independent interface to the underlying hardware or operating system. The 
layers are described below, starting from the lower level layer up to the upper level. 

The Communication D evice Layer directly manages the communication devices. 
This layer is designed to send and receive data using a specific communication device 
(SpaceWire, CAN, MIL-1553, etc) and, in principle, makes the upper layers 
independent with respect to the communication device used to transfer the 
data.During the development phase various tests concluded that transferring large data 
sets using CAN/1553 became impractical, thus these buses have been used for 
transferring HK parameters to the SMU. 
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The CoDec Layer is in charge to encode outgoing messages from the routing layer to 

the communication layer, and decode incoming messages from the communication 

layer to the routing layer. 

The Routing Layer makes the upper layer independent of routing strategies and 

dispatching methods. While static configuration tables have been utilized for 

CANbus/1553 topologies, the logic addressing with the 10X-Router adaptive routing 

capabilities have been exploited for the SpaceWire links. 

The Message Layer deals with data transformation: application data and requests are 

encapsulated into objects which reflect the structure of a standard message, such as 

Telecommand and Telemetry messages of the Packet Utilization Standard protocol 

(PUS). Telemetry and Telecommand messages are implemented according to the On-

Board Software Framework [3], with additional PUS services and RMAP features. 

The Application Layer decouples a generic Application Processes from the lower 

layer providing them a standard communication interface.  

 

Figure 3: Main modules of the IPPM software library 

 

The current version of the software library is organized in modules, as depicted in 

Figure 3, and supports Telecommand Verification, Housekeeping, Large Data 

Service, Command Distribution and On Board Scheduling standard PUS services 

together with RMAP capabilities; while SpaceWire, MIL-1553 and CAN are the 

currently supported communication devices. 

 

SpaceWire Test and Verification

80



REFERENCES 

1. ECSS, E-70-41 Telemetry & Telecommand Packet Utilization Standard. 

2. ECSS, E-ST-50-52C SpaceWire - Remote Memory Access Protocol (normative). 

3. Alessandro Pasetti and Vaclav Cechticky, Automatic Control Laboratory of 

ETH-Zurich, On-Board Software Framework,  

http://www.pnp-software.com/ObsFramework. 

SpaceWire Test and Demonstration Using the Integrated Payload Processing Module

81

http://www.pnp-software.com/ObsFramework�


 

SpaceWire Test and Verification

82



PREPARING THE RASTA SOFTWARE FOR SPACEWIRE BACKPLANES 

Session: SpaceWire Test and Verification 
Short Paper 

Daniel Hellström, Kristoffer Glembo, Sandi Habinc 

Aeroflex Gaisler, Kungsgatan 12, SE-411 19 Göteborg, Sweden 
daniel@gaisler.com, kristoffer@gaisler.com, sandi@gaisler.com 

ABSTRACT 
Replacing a Peripheral Component Interconnect (PCI) [3] backplane with a 
SpaceWire [1] backplane would normally require major changes to hardware and 
software. Today most PCI boards [6] used in the Reference Avionics System Test-
bench Activity (RASTA) already include SpaceWire interfaces and connectors on the 
front panel. Aeroflex Gaisler has developed new abstract bus models for the Driver 
Manager (DM) used previously in RASTA software [5] solutions, in order to simplify 
porting of existing and newly developed RTEMS [4] software and improve code 
reuse. This paper focuses on the software aspects of this development. 

BACKGROUND 
The RASTA facility is a test-bedding element of the avionics laboratory at ESA [6]. It 
provides a representative environment for demonstration, evaluation and testing of 
hardware, software and communication protocols that comprise on-board data 
systems. RASTA has since grown in to a standardized platform [10] for on-board data 
system developments and is made mandatory in many ESA activities. RASTA 
consists of on-board computers, boards on-board I/O boards, TM/TC boards, etc.  

Most of the RASTA hardware elements are implemented as system-on-chip designs 
based on the AMBA [9] on-chip bus. The processor element is the LEON2 or LEON3 
SPARC processors, residing on the AMBA on-chip bus. The processor is connected 
via AMBA to one or more cores implementing various interfaces to buses such as PCI 
and SpaceWire. Other elements, such as on-board I/O, are also based on the AMBA 
on-chip bus, featuring interfaces such as PCI, SpaceWire, CAN, Mil-Std-1553B, 
CCSDS/ECSS Telemetry (TM) &Telecommand (TC) etc. Thus each board comprises 
an ASIC/FPGA that implements a system-on-chip based on the AMBA on-chip bus.  

The PCI bus is currently used as the main interface between these boards. This paper 
discusses the next step, where PCI is replaced with SpaceWire links for implementing 
communication between boards. Communication between the processor and any other 
resource can be done in several steps; firstly the processor accesses local resources 
(i.e. cores) over the AMBA bus; secondly it accesses other units via PCI (current 
baseline); thirdly it accesses other units via a SpaceWire link (discussed in the paper). 

RMAP INITIATOR STACK 
Throughout this paper all SpaceWire accesses involve Remote Memory Access 
Protocol (RMAP) [2] commands sent to and responses received from RMAP targets. 
The RMAP header and CRC are generated by an RMAP initiator stack developed by 
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Aeroflex Gaisler (CRC is generated by hardware where supported), received RMAP 
responses are also processed by the stack. All RMAP commands are generated 
according to the ECSS standard [2]. The initiator stack supports path addressing, 
logical addressing and all defined transfer types. The initiator stack does not 
implement the RMAP command/response transportation itself, but relies on an RMAP 
stack driver, which in turn relies on SpaceWire packet transportation implemented by 
an underlying SpaceWire driver. Layering the software makes it possible to support 
SpaceWire cores from different vendors. The initiator stack does not require any 
particular RMAP support in hardware since the RMAP commands are generated in 
software. An RMAP stack driver has been implemented supporting the RTEMS 
SpaceWire drivers for the GRLIB GRSPW/GRSPW2 IP cores [7][8].  

DRIVER MANAGER 

1.1 OVERVIEW 

Device drivers rely on services such as Plug&Play scanning and IRQ (Interrupt 
Request) management. The services are often implemented differently for different 
bus types (e.g. AMBA or PCI), and as a result different Application Programming 
Interfaces (API) are utilized when accessing these services. The Driver Manager 
(DM), developed by Aeroflex Gaisler, in RTEMS provides services such as driver 
loading (finding devices and appropriate drivers for them), IRQ handling etc. In an 
attempt to provide a single API for the above mentioned services regardless of bus 
type, the DM was created and abstract models for buses, devices, bus drivers and 
device drivers were introduced. These concepts have been successfully implemented 
and used in RASTA for on-chip AMBA buses, PCI buses and AMBA-over-PCI (i.e. 
communication from local-AMBA bus over PCI to remote-AMBA bus).  

This paper introduces two new bus models; the SpaceWire Network and AMBA-over-
RMAP (i.e. communication from local-AMBA bus over SpaceWire to remote-AMBA 
bus). In order to support the new models the DM API has been extended with READ 
and WRITE operations that can be used for communication over all bus types.  
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1.2 SPACEWIRE NETWORK BUS MODEL 

The SpaceWire Network model implements IRQ management and read and write 
access to SpaceWire RMAP targets. The services are used by SpaceWire Node 
drivers. The SpaceWire standard currently does not define Plug&Play, instead the 
SpaceWire network configuration including all nodes are provided by the user. The 
most important node configuration parameters are the SpaceWire destination address, 
destination key and a virtual SpaceWire network IRQ number. 

In each service request initiated by a SpaceWire Node driver, a pointer identifying the 
particular node is given to the SpaceWire Network model. From the node 
configuration the parameters used in lower layers can be determined. Read and write 
access requests are for example implemented by adding SpaceWire destination 
address/key and passing on the request to the RMAP initiator stack. 

SpaceWire currently does not transport IRQ over the link. IRQ is optional and when 
enabled are communicated as discrete level sensitive signals (requiring some sort of 
GPIO hardware). The SpaceWire Network bus model works with virtual SpaceWire 
IRQ numbers that can be resolved into a GPIO pin accessible by the processor. In 
order to determine what caused the IRQ and to acknowledge the source, the RMAP 
target must be accessed over the SpaceWire bus.  

There are a number of reasons why an RMAP request cannot be performed in an 
interrupt context, for example the time for completing an RMAP request may be too 
long or the initiator stack itself may rely on interrupts. Instead of acknowledging the 
IRQ source directly the GPIO interrupt is masked, stopping further IRQs from the 
source, and a high-priority Interrupt Service Routine (ISR) task is awoken. The task is 
responsible for calling all registered ISRs, the IRQ source will finally be 
acknowledged and before suspending the ISR task will unmask the GPIO interrupt. 

Figure 1: System overview 
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1.3 AMBA-OVER-RMAP BUS MODEL 

The AMBA-over-RMAP bus model provides AMBA device drivers with IRQ 
management and read and write access to AMBA cores over SpaceWire. The model 
can be seen as a generic SpaceWire Node driver laying on top of the SpaceWire 
Network model. By reusing existing AMBA bus layers and Plug&Play scanning, the 
footprint is reduced, and the AMBA-over-RMAP bus model interface is similar to a 
standard on-chip AMBA bus model, with a few additions. 

The IRQ service is implemented on top of the SpaceWire Network IRQ service, the 
constraints are thus propagated to AMBA-over-RMAP device drivers. ISRs are 
executed in a high-priority task context in order to read and write the AMBA bus, this 
differs from the on-chip AMBA bus model. 

Critical areas, such as accessing registers, in combination with changing the state of 
the software, are normally protected from an ISR by changing the Processor Interrupt 
Level (PIL) to disable interrupts during the execution of the critical section. AMBA-
over-RMAP drivers cannot change the PIL to protect themselves, since a register 
access over SpaceWire may require IRQ or may take substantial time to complete. 
The same applies to the ISR itself that now executes in task context, it may be pre-
empted while accessing an AMBA register over SpaceWire. This problem is solved 
by protecting critical areas with semaphores and introducing semaphores in the ISRs. 

Even though register and memory accesses differ radically from the on-chip AMBA 
bus model, the simple API provided minimizes the required changes. The driver 
author needs not to worry about RMAP parameters as they are added in lower layers. 
The major differences are that accesses can be pre-empted by other tasks while 
waiting for response (depending on initiator stack, SpaceWire driver and scheduling 
policy) and that accesses may fail due to SpaceWire communication errors. 

FUTURE IMPROVEMENTS 
The current implementation of the RMAP initiator stack and the SpaceWire driver 
may create lock congestion when multiple tasks access the SpaceWire link 
simultaneously. Setting up task scheduling may reduce the problem significantly, 
however it cannot be avoided completely. Current software could be improved and 
support for multiple DMA channels could be added for the GRSPW2 core to avoid 
lock congestion. 

Error handling could be improved in the bus models. RMAP read and write accesses 
may fail, layers beneath the AMBA device driver involved could be made to handle 
failures or re-execute requests automatically. With the bus model, error handling can 
be isolated per SpaceWire network, per SpaceWire node or per AMBA device. 

CONCLUSIONS 
The SpaceWire backplane software is already used in a separate ECSS TM/TC FPGA 
[12] project to set up, control and transport frames [11] over SpaceWire using RMAP. 

The abstract bus models of the Driver Manager (DM) makes is possible to reuse and 
maintain most of the interface towards an AMBA driver, regardless of bus location 
(on-chip or over SpaceWire). Even though this paper describes a number of changes 
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that AMBA drivers must undergo for conversion to an AMBA-over-RMAP bus model, 

they are relatively few and easy and the driver structure can be maintained. 

Nevertheless, most importantly the user interface remains the same. 

Currently SpaceWire Plug&Play is the only missing link in order to go completely 

Plug&Play, all the way from the controlling processor to a resource on the other side 

of a SpaceWire network. 
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ABSTRACT 

The Virtual Spacecraft Integration (a.k.a. “TopNET”) is achieved through the use of a 

network such as the Internet. To determine the benefits and limitations of virtual 

spacecraft integration, ESA conducted a pilot study involving spacecraft and 

equipment manufacturers in different countries across Europe. They conducted 

experiments using the SpaceWire Internet Tunnel device to remotely integrate 

components and reported back on their findings. Their results were very positive. 

Despite the identified benefits, there are potentially some limitations of virtual 

spacecraft integration. In the paper, the outcome of the pilot study will be shortly 

summarized, and a strategy to enhance “synchronous” communication will be 

presented. Moreover, a further objective is to extend the TopNET concept, having in 

mind the CCSDS SOIS architecture. 

1 INTRODUCTION 

The concept of virtual spacecraft integration has been described in previous papers by 

ESA/University of Dundee [2]. It provides a means by which integration and testing 

of spacecraft components can be performed without the need to bring each of the 

components to one physical location. The SpaceWire standard [1] aims to improve 

reusability, promote compatibility and reduce system integration costs. Virtual 

spacecraft integration has the potential to reduce system integration costs still further, 

by reducing travel and by identifying problems at an earlier stage of spacecraft 

development than is currently the case. 

Virtual integration is achieved through the use of a network such as the Internet. A 

section of the spacecraft’s onboard bus is replaced with a virtual connection over the 

network, allowing components to communicate with one another, despite potentially 

being great distances apart. 

2 THE SPACEWIRE INTERNET TUNNEL 

The SpaceWire Internet Tunnel is a tool for performing virtual spacecraft integration 

in a SpaceWire network and it has been originally developed by the University of 

Dundee under ESA contract. An example SpaceWire network which could benefit 

from virtual spacecraft integration is shown in Figure 1. This network contains two 

TopNET Evolution

89



separate sub-systems, which may be developed by different companies, possibly in 

different countries. This is quite common in European missions, for example. 

 

Figure 1: Example SpaceWire network containing two distinct sub-systems 

A SpaceWire Internet Tunnel replaces a SpaceWire link in an onboard network, and 

consists of both software and hardware components. A SpaceWire cable representing 

one end of the link to be replaced by the SpaceWire Internet Tunnel is connected to a 

SpaceWire IP-Tunnel device. This device is then connected to a PC by a USB cable. 

Software running on the PC manages the Tunnel and allows traffic crossing the 

Tunnel to be monitored and recorded. A similar set-up is used at the other end of the 

link being replaced, and the software running on the two PCs tunnels traffic received 

on the SpaceWire links over a network to the other end. This arrangement is shown in 

Figure 2, where the two sub-systems from the example network in Figure 1 have been 

connected virtually using a SpaceWire Internet Tunnel. These two sub-systems may 

be in the same lab, or may be in different continents. 

Mass Memory 
Unit

Processor

Router

Camera 
Instrument 1

Camera 
Instrument 2

Router

SpaceWire Sub-System 1

SpaceWire Sub-System 2

Internet

SpaceWire
IP-Tunnel

SpaceWire
IP-Tunnel

PC running SpaceWire
IP Tunnel Software

PC running SpaceWire
IP Tunnel Software

 

Figure 2: Example SpaceWire network containing two sub-systems integrated virtually 

As well as exchanging data packets, the Tunnel also ensures that the link state is 

reflected at each end of the Tunnel.  This means that if a link is disconnected at one 

end of the Tunnel, the link at the other end will also be disconnected. Other than the 

increased latency and reduced bandwidth, the Tunnel is almost transparent. 

3 THE TOPNET PILOT STUDY: BENEFITS AND LIMITATIONS 

An ESA funded pilot study, the “TopNet Pilot Study”, was implemented to 

investigate the benefits and limitations of virtual spacecraft integration when in use 

within a real project environment. The study involved three consortia, each consisting 
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of partners spread across Europe. Each consortium proposed experiments where 

SpaceWire devices situated in each of the consortium’s partners would be virtually 

integrated. 

On completing their experiments, each consortium presented their findings. They also 

compiled a report containing their results and conclusions. The general consensus of 

those involved in the pilot study is that although there is still the possibility to make 

improvements, virtual spacecraft integration and the SpaceWire Internet Tunnel is a 

very useful tool for performing integration testing. Virtual spacecraft integration has 

the potential to reduce costs and time in spacecraft development, while also improving 

the completed product. By allowing integration testing of spacecraft components to be 

performed at an earlier stage, problems in interfaces and at the application level, for 

example, can be identified and corrected earlier, which reduces the time and money 

required to address such issues. Travel can also be reduced through use of virtual 

spacecraft integration as components can be integrated without bringing them to a 

single physical location. This has an environmental benefit in addition to a financial 

one. 

Cooperation between organisations, or between sites within one organisation, can also 

be improved through use of virtual spacecraft integration. Engineers working on 

different subsystems, who may not normally have contact with one another until the 

integration phase late in the development cycle, may instead communicate at an 

earlier stage in the development cycle. Virtual spacecraft integration also provides 

much more flexibility than traditional integration procedures. The time at which 

integration testing is performed is much more flexible, as devices do not all need to be 

in the same place at a specific date and time. It is also easy to replace components 

with simulators when performing virtual integration testing, while test and analysis 

equipment can also be integrated virtually. 

Despite these benefits there are potentially some limitations of virtual spacecraft 

integration. Use of a network connection such as the Internet introduces limits in 

bandwidth and latency. Neither are guaranteed in Internet communication, and both 

bandwidth and latency can vary greatly during a connection’s lifetime. This limitation 

can affect cases when synchronous communication is required during the integration 

of two different modules. 

Firewall restrictions can pose a problem to virtual spacecraft integration. In Internet 

communications there must be a server present. Such servers normally require special 

firewall permissions to be granted by a network administrator, and these permissions 

may not always be given to PCs running in a lab. Some organisations only allow 

certain traffic, such as web and FTP, to cross their firewall. The addition of a 

SpaceWire Internet Tunnel Server can address the firewall issue, where PCs cannot 

act as a server behind a company’s firewall. 

4 ENHANCING SYNCHRONOUS COMMUNICATION 

Starting from the valuable feedback received by the pilot study, it seems necessary to 

improve the TopNET concept, in order to overcome the above-mentioned limitations. 

In particular, the latency can affect cases when synchronous, real time communication 

is required during the integration of two different modules. 
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For the Internet tunnelling communication, regular TCP/IP is used. It is well-known 

that TCP/IP implements a “best-effort” paradigm without guaranteeing latency. The 

reason for this is that queuing delays sum up at each router. TCP/IP is a “best effort” 

protocol and tries to fill the routers queues. Possible solutions in order to have a 

guaranteed latency are to use a customised communication protocol: 

o TCP Westwood+ [3] is available in Linux kernel and it is a sender-side only 

modification of the TCP protocol stack that optimizes the performance of TCP. 

The use of TCP Westwood+ can provide benefits in terms of latency, since it is 

known to provide less queuing. In case of a particular scenario, i.e. when the 

bandwidth of the tunnel is known, as it is in corporate intranet, TCP Westwood+ 

can be further optimised to improve the performances. 

o Design rate-based transport protocol at application level executed over the UDP, 

as it is done for applications that are time-sensitive, such as VoIP or Video 

Conferencing [4]. 

If the suggested modification for the Internet Tunnelling communication will bring 

the expected benefits and a guaranteed latency is obtained, new opportunities will be 

created for the Virtual Satellite Integration, where real-time communication will be 

possible. If the latency, other than been guaranteed, is also low enough, the TopNET 

concept could be extended to consider additional Data Link Layers besides 

SpaceWire, in order to cover the full CCSDS SOIS architecture [www.ccsds.org]. 

5 TOPNET EVOLUTION: CONCLUSIONS 

In this paper, the outcome of the Pilot Study has been shortly summarized, and a 

strategy to enhance “synchronous” communication has been presented. The long term 

objective is to extend the TopNET concept, having in mind the CCSDS SOIS 

architecture. This means the introduction of additional Data Link Layers besides 

SpaceWire and the use of Quality of Service metrics. Future activities planned by 

ESA will pave the way to reach these objectives. 
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ABSTRACT 
STAR-Dundee’s latest software API and applications allow users to build virtual 
SpaceWire networks on their PCs.  Users can create their own virtual devices to 
represent hardware that may not yet be available, or to prototype features that aren’t 
implemented in existing hardware.  Virtual SpaceWire networks can then be 
constructed using these virtual devices.  The virtual networks can also be integrated 
with one or more physical SpaceWire networks for testing, or can be tested in an 
entirely virtual environment. 

This paper describes the functionality provided to allow users to create virtual 
devices, and the mechanisms used to integrate these virtual devices with one another 
and with physical SpaceWire networks.  The advantages and potential limitations of 
this concept of virtual integration are identified and discussed. 

1 INTRODUCTION 
STAR-Dundee supplies a number of SpaceWire devices for test and development 
which can be connected to a PC [1].  Software is provided with these devices to allow 
users to send and receive traffic on a SpaceWire network, to configure and monitor 
devices on a SpaceWire network, and to perform many other tasks. 

Users of STAR-Dundee equipment can also write their own applications to 
communicate with the SpaceWire devices and the SpaceWire network.  An 
Application Programming Interface (API) is provided which allows software to be 
developed in C, C++, Java and many other languages. 

Recently this API has been substantially improved, with new functions to make the 
development procedure much easier and to simplify common tasks.  The new API 
also provides a number of additional features.  The same API can be used to 
communicate with all STAR-Dundee devices, regardless of whether they are routers 
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or interfaces, and whether they are connected by USB, PCI, or some other 
mechanism. 

The focus of this paper, however, is the API’s support for virtual devices.  Virtual 
devices are virtual representations of physical devices, created onboard the PC.  These 
virtual devices can be routers or interfaces and are treated exactly like physical 
devices by the API. 

2 USING VIRTUAL DEVICES 
Virtual devices can be created using the API or through the STAR-Launch [2] 
software provided.  STAR-Launch is a graphical tool which can be used for many 
purposes.  As with normal devices, virtual devices can be configured using the API or 
STAR-Launch, and traffic can be sent to them or received from them. 

Virtual devices can be connected together using virtual SpaceWire links, and 
applications and physical devices can also be connected together using the same 
virtual links.  This allows a virtual SpaceWire network to be constructed inside a PC, 
with no physical hardware required.  Alternatively virtual and physical devices can be 
combined in a single network.  This allows a subsystem to be replaced with a virtual 
implementation, which may be useful in projects where subsystems are developed in 
different locations and/or organisations. 

Using virtual devices also allows for additional debugging and status information to 
be made available.  A virtual device can provide information to the user, which may 
not be possible with the physical implementation.  Virtual devices can display error 
information on screen, or record statistics to file.  This may not be possible in the 
physical implementation of these devices. 

The use of virtual links also makes it much easier to analyse the traffic crossing a link.  
Virtual Link Analysers allow the traffic crossing a virtual SpaceWire link to be 
monitored.  In a physical system, analysing a link is likely to involve replacing a cable 
with two cables and a SpaceWire Link Analyser [3].  In a virtual system, a Link 
Analyser can be added to a virtual link with the click of a button. 

A planned improvement is the addition of the SpaceWire IP Tunnel [3], a tool for 
virtual spacecraft integration [4, 5], which allows subsystems to be connected 
virtually over the Internet.  This would allow virtual subsystems to be integrated 
virtually, and would mean that a group working on one subsystem could debug 
problems with their subsystem, while connecting remotely to the other subsystems.  
These subsystems could in turn be monitored and debugged by their developers. 

3 VIRTUAL ROUTING 
A SpaceWire network is made up of links, nodes and routers [6].  To connect together 
the nodes in a large virtual network, in addition to the virtual links, virtual routers are 
required. 

The STAR-Dundee API includes a Virtual SpaceWire Router, which can be used for a 
number of purposes, including the basic task of routing traffic around a virtual 
network.  The Virtual SpaceWire Router can be used to test different router 
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configurations, e.g. different timeouts, different routing tables, etc.  It can also be set 
to act as a time-code master, in order to test the behaviour of a network or device 
when time-codes are distributed across the network. 

Virtual routers can also be useful in systems which aren’t obviously using virtual 
components.  For example, a PC might have two applications running, each of which 
wishes to receive packets sent to a device connected to the PC.  The first application 
may wish to receive packets sent to logical address 251.  The second application may 
wish to receive packets sent to logical address 252.  To achieve this, a virtual router 
can be connected to the device, with packets with logical address 251 routed to the 
first application and packets with logical address 252 routed to the second application.  
The two applications can now share the same physical connection to a SpaceWire 
device, and receive only the packets they are interested in. 

Applications or services may also wish to receive packets based on their protocol ID, 
which should be the second byte in an appropriately formatted packet.  The virtual 
router can also be configured to act as a protocol dispatcher, routing packets based on 
the second byte.  This allows RMAP packets to be passed to a service which deals 
with RMAP requests and replies, for example, while CCSDS packets are passed to a 
different service. 

4 BENEFITS AND LIMITATIONS 
It’s not always possible to exactly simulate a physical device in software, and there 
may be timing differences between a physical device and its virtual implementation.  
It may also take some time to write a virtual device, although the STAR-Dundee API 
is designed to simplify this development and provides a number of re-usable 
components for this purpose. 

As long as any testing is also performed on physical hardware at some stage, the use 
of virtual devices can provide huge benefits during initial testing and integration, for 
example. 

Virtual devices can be used to prototype a device or new features in an existing 
device.  They can be used to replace a device which is not available or has a fault, or 
to try out a new device being considered for use.  Virtual networks allow different 
network architectures to be tested without the time consuming task of connecting 
devices and SpaceWire cables. 

The additional debugging information that can be provided in a virtual device could 
be invaluable in identifying problems.  Similarly the monitoring and analysis that can 
be performed on a virtual link can provide information which might not be obtainable 
in a physical network. 

5 SUMMARY 
For equipment developers virtual devices provide a simple method of prototyping 
features before implementing these features in hardware.  For equipment suppliers 
virtual devices can allow users to test virtual implementations of hardware prior to 
purchase, or to begin development while waiting on delivery.  For network designers 
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virtual networks can be constructed to rapidly prototype and test potential network 

architectures, without needing to connect SpaceWire cables to devices. 

The ability to integrate devices and subsystems into a network without requiring the 

physical hardware to be present means that devices or subsystems developed at 

separate geographical locations can be virtually integrated at an earlier stage of 

development.  With the additional debugging and analysis capabilities available in a 

virtual network, potential problems in a system can be discovered at this stage, rather 

than towards the end of the project when the components are physically integrated and 

correcting errors is more costly. 
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ABSTRACT 
The SpaceWire RMAP core is a VHDL IP core implementing the Remote Memory 
Access Protocol (RMAP). RMAP has been defined by the SpaceWire Working Group 
and standardised by the European Cooperation for Space Standarization (ECSS) as 
standard number ECCS-E-ST-50-52C. RMAP allows devices to read and write from 
memory spaces in a standard way, increasing device interoperability and reducing 
development time. The SpaceWire RMAP IP core provides a well tested, easy to use 
core for systems that need RMAP capability. 

1 INTRODUCTION 
The RMAP IP core was developed by the University of Dundee under contract from 
the European Space Agency (ESA). It is available from ESA for use on European 
space missions or projects and available from STAR-Dundee for other applications. 
The core is highly configurable and can be used as an RMAP target or initiator. The 
core can be implemented in a number of technologies, including various radiation 
tolerant FPGAs. 

2 BACKGROUND 
The Remote Memory Access Protocol (RMAP) standard is now available from the 
ECSS website as ECCS-E-ST-50-52C [1]. The RMAP standard was written by the 
University of Dundee with support from members of the SpaceWire Working Group. 
RMAP is a SpaceWire protocol that provides a standard mechanism for reading from, 
and writing, to memory in a remote SpaceWire node. The RMAP protocol has already 
been designed into the ESA SpW-10X router ASIC [2] and into missions like Bepi-
Colombo [3][4], MMS [5], and ExoMars rover [6]. 
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3 RMAP IP CORE OVERVIEW 

3.1 FUNCTION 

There are two main functions which can be selected by configuration at synthesis 
time. The first type is referred to as the “initiator” RMAP Interface which sends out 
RMAP commands and receives replies. The second type is the “target” RMAP 
Interface which receives RMAP commands, executes them and sends out any required 
replies. The RMAP core has a wrapper which connects to the ESA/Dundee 
SpaceWire-b core [7] [8] which handles the SpaceWire point-to-point link protocol. 
The RMAP core target and initiator functions are illustrated in Figure 1. The core is 
shown in three configurations; target only, initiator only or both. 

 

Figure 1: RMAP IP core Data Flow 

RMAP commands are initiated in the initiator user logic, encoded as RMAP packets 
in the “Initiator RMAP Interface”, sent over the SpaceWire link as an RMAP packet, 
decoded by the “Target RMAP Interface” and data or information is passed to the 
target user logic after authorisation of the command. The “Target RMAP Interface” 
formats an RMAP reply packet which is sent over the SpaceWire interface, decoded 
by the “Initiator RMAP Interface” and the reply data/status information is passed to 
the initiator user logic.  

3.2 ARCHITECTURE 

The architecture of the RMAP core is illustrated in Figure 2. The SpaceWire CODEC 
implements the SpaceWire serial point to point protocol, ECSS-E-ST-50-12C [9], and 
provides FIFO ports to the Protocol Input and Output blocks. The Protocol Input and 
Output blocks determine the destination of packets dependent on the packet header. 
The protocol handlers can bypass data from the RMAP core if the protocol identifier 
does not identify the packet as an RMAP packet. 
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Figure 2: RMAP IP core Architecture 

The Target RMAP Interface decodes RMAP command packets, reads or writes data 
from the host bus and returns RMAP reply packets. If the RMAP command is a 
verified write command the target writes the command data to the verify buffer before 
it is transferred to host memory. The Initiator RMAP Interface accepts commands into 
the initiator transaction table, encodes RMAP command packets, decodes reply 
packets and outputs status information. The target and initiator interact with the user 
memory space using DMA controllers. 

3.3 MEMORY INTERFACE 

The RMAP controller interface to memory is modelled on the AMBA AHB bus 
standard which provides a pipelined control/data bus transfer model. Data is 
transferred to and from the bus in bursts using internal burst FIFOs in the RMAP core. 
The bus can be configured for different bus size widths, byte order and bit swapping 
operations. 

3.4 CONFIGURATION 

The RMAP core is configured using VHDL generics. The configuration options of the 
core include the ability to implement target only logic, initiator only logic, or both 
target and initiator; configuration of the host bus width, the burst transfer depth and 
the byte/bit ordering of the RMAP packet data; watchdog timer on bus transfers; 
maximum number of outstanding initiator commands and therefore the initiator 
transaction table size; configuration of the internal FIFO sizes and the target verify 
buffer size. 

4 USING THE RMAP CORE 

4.1 TARGET 

The target command logic is responsible for decoding RMAP command packets and 
executing the specified command, e.g. write. RMAP command headers are checked 
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for validity and the set of RMAP command authorisation parameters are passed to the 
host for authorisation. The host can check the memory address, command and other 
parameters, and decide to authorise or discard the command. When the RMAP 
command is a write command, and authorisation has been given by the host, data is 
placed in user memory by the target DMA controller. 

The target reply logic is responsible for sending RMAP reply packets with the status 
of commands and additional data when a read command is performed. The status is 
dependent on the validity of the RMAP command packet and the authorisation 
response of the host. Reply data is read from the host user memory by the DMA 
controller and sent in the RMAP reply packet. 

4.2 INITIATOR 

The RMAP Initiator Handler uses several memory structures inside the RMAP core 
and inside initiator user memory. The structures are used to control the passing of 
commands from initiator user memory to the RMAP core and the passing of replies 
from the RMAP core to initiator user memory. The RMAP initiator data structures 
and data flow is depicted in Figure 3. 

 

Figure 3: Initiator Data Structures 
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In the initiator user memory there are four possible memory areas or buffers 
associated with each RMAP command: transaction details record, header information, 
write data, and reply data. 

The transaction details array holds the following information: a pointer to the 
command header in user memory, a pointer to any data to be sent with a write or read-
modify-write command, a pointer to the memory location for sent notification, a 
pointer to space for a reply to a read or read-modify-write command, a pointer to the 
memory location for reply notification, the length of data to be read or written and the 
reply time-out value. 

The header information buffer holds the RMAP command header information 
including the target SpaceWire address and the reply address. The write data buffer 
holds any data to be sent with a write or read-modify-write command. The reply data 
buffer is reserved space into which any data associated with a read or read-modify-
write command will be written. The length of the buffer is given by the data length 
field and will not be overwritten by the core, even when a read reply packet is 
received with more data than is in the buffer or the RMAP header record data length 
field is greater than the transaction record data length. 

4.3 SENDING A COMMAND 

To send an RMAP command the host sets up the header of the command in a header 
information buffer, any data to be sent with the command in a write data buffer and 
space for any reply in a reply data buffer. The user then creates a transaction record 
with pointers to the header information buffer, write data buffer and reply data buffer 
along with information about the amount of data in these buffers. It also provides 
pointers to memory locations (or registers) where sent and reply notifications are to be 
made. Finally it adds into the transaction record a reply time-out value which is set in 
micro seconds or can also be infinite. Once the transaction record is complete the 
initiator user application informs the RMAP core that is has an RMAP command to 
send and passes the RMAP core a pointer to the corresponding transaction record. 

If the transaction details record flags field indicates that the command is expecting a 
reply the command is not started (sent) until there is room for another transaction in 
its outstanding transaction array. The RMAP core will then send the command by 
copying the header information from user memory to the SpaceWire interface, adding 
any detail necessary (e.g. header CRC). The header information checked for errors 
before sending begins. Any errors which are detected in the header are recorded and 
output on the status interface and to the notify sent register, if used. 

If there is any write data to be sent this will be copied from the write data buffer in 
user memory to the SpaceWire interface and appending the data CRC. Finally an EOP 
marker will be added to complete the packet. The initiator user application will be 
informed that the command has been sent by the RMAP core writing the transaction 
ID and status to the memory location specified by the sent notify pointer in the 
transaction details array element. 
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4.4 RECEIVING A REPLY 

When an RMAP reply is received the core searches the outstanding transaction array 
for an entry with a transaction identifier that matches the transaction identifier of the 
reply. Assuming there is a match the core then writes any data from a read or read-
modify-write reply to the user memory location specified by the reply data pointer for 
the corresponding entry in the transaction details array. The RMAP core writes the 
transaction identifier and status to the memory location specified by the reply 
notification pointer in the transaction details array entry. When this has been done the 
relevant entry in the outstanding transaction array is cleared freeing it for use by 
another RMAP transaction. The core can generate transaction Ids automatically to 
avoid the change that the user logic may use duplicate identifiers. 

4.5 TRANSACTION DETAILS RECORD 

The transaction details record is initialised in user memory by the host application 
when it wishes to send an RMAP command. The format of the transaction details 
record is illustrated in Table 1. The flags field is a bit mask which holds properties of 
the transaction record such as notify on send, wait forever, etc. 

 31 23 15 7 0 

0 Unused Flags 

1 Header Pointer 

2 Write Data Pointer 

3 Sent Notify Pointer 

4 Reply Data Pointer 

5 Reply Notify Pointer 

6 Unused Data Length 

7 Reply Timeout 

Table 1: Transaction Details Record Memory Setup 

4.6 HEADER INFORMATION RECORD 

The header information record holds information on the RMAP command parameters 
to be sent. An example header information record is stored in memory as defined by 
an example header in Table 2. In the example there are four target SpaceWire 
addresses and one block of reply SpaceWire addresses. 

 31 23 15 7 0 

0 Target Path Address 1 Target Path Address 2 Target Path Address 3 Target Path Address 4 

1 Target Address Protocol ID Instruction Key 

2 Reply Path Address 1 Reply Path Address 2 Reply Path Address 3 Reply Path Address 4 

3 Initiator Address Transaction ID 1 Transaction TID 0 Extended Address 

4 Address 3 Address 2 Address 1 Address 0 

5 Data Length 2 Data Length 1 Data Length 0 Unused 

Table 2: Header Information Record Setup 

5 IP VALIDATION 
Verification of the RMAP core is performed using an automated VHDL test-bench 
which runs a series of test command scripts to check the function of the RMAP core. 
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The command scripts run test-cases which detect correct and incorrect behaviour of 
the configured RMAP core relative to the functional specification.  

VHDL code coverage using the Modelsim simulator code coverage option in 
Modelsim SE is used to check for coverage of the complete design by the test cases. 
The purpose of the test cases is to show the function of the UUT is equivalent to the 
specification defined in the functional specification document. 

6 SYNTHESIS 
The RMAP core has one system clock input which clocks all flip-flops in the design 
except the receive clock domain of the SpaceWire link. The SpaceWire transmitter 
can also be clocked from a separate clock input on the core dependent on the 
SpaceWire link configuration settings. 

A typical way to implement this RMAP core design is to run the system clock at the 
byte rate of the system and use a separate transmit clock to transmit the bytes at the 
required bit rate. For example a system which processes RMAP data at 20 Mbytes/s 
requires a 100 MHz transmit clock to transmit the byte data at 200 Mbps DDR, taking 
into account the SpaceWire data character length of 10 bits. 

6.1 SYNTHESIS RESULTS 

The results of synthesis runs on the Mentor Graphics Precision synthesiser are given 
below.  

Model 
AX2000 Spartan3E 1600 ProASIC3E1500 

FF Comb Modules Slices Tiles 
Target Only with SpW 1425 2962 4464 (13.84%) 1134 (7.69%) 4576 (11.92%) 

Initiator Only with SpW 2029 4434 6463 (20.04%) 2213 (15.00%) 7987 (20.80%) 

Target and Initiator no SpW 2599 5634 8233 (26.20%) 2584 (17.52%) 10206 (26.58%) 

Target and Initiator with SpW 2957 6249 9206 (29.06%) 3095 (20.97%) 11261 (29.33%) 

Table 3: Area usage of RMAP core 

6.2 SEU PROTECTION 

It is expected that the fabric of the FPGA or ASIC technology will provide SEU 
protection for synchronous elements in the design (flip-flops). Typically memory 
blocks are not protected in silicon, therefore they should either be implemented as 
flip-flops, or a drop in replacement for the single and dual clocked memory blocks 
should be used in the final synthesised model. For example, memory blocks with error 
detection and correction (EDAC) using error correcting codes (ECC) are provided 
with the Actel Libero and designer tool chain. Critical memory blocks for SEU 
protection in the design are the verify buffer, transaction table and DMA controller 
FIFOs. 

The SpaceWire interface transmit and receive FIFOs are also critical but as the RMAP 
protocol is used, the packet data is protected by header and data CRCs. In this case 
SEU protection may not be required. 
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7 CONCLUSION 
The RMAP IP core was developed in the frame of the SpaceNet activity. This resulted 
in a SpaceWire interface VHDL core that includes the RMAP protocol extension to 
SpaceWire, which will enable users to readily implement the RMAP protocols in 
FPGAs or ASICs. 

It is available from ESA for use on European space missions or projects and available 
from STAR-Dundee for other applications. The core is designed to be a highly 
configurable VHDL IP core which can be used as an RMAP target or initiator. The 
core can be implemented in a number of technologies, including the radiation tolerant 
Actel RTAX which is widely used in the Space industry. 
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ABSTRACT 

The SpaceWire Standard ECSS-E-ST-50-12C [3] calls for a Low Voltage Differential 

Signaling (LVDS) physical layer as defined in ANSI/TIA/EIA-644 [1], Electrical 

Characteristics of Low Voltage Differential Signaling Interface Circuits.  This paper 

will discuss that Aeroflex Colorado Springs LVDS drivers are compatible with the 

ANSI/TIA/EIA-644 standard and contain a current source which generates the 

required voltage across a 100Ω, parallel, resistor. Laboratory results will be reported 

which examine a hypothetical failure mode where the supply voltage, VDD, exceeds 

the ABSOLUTE MAXIMUM RATINGS defined in the Aeroflex Datasheet 

[4][5][6][9]. 

1 BACKGROUND 

Low Voltage Differential Signaling, LVDS, is useful in applications that require low 

power, low noise, and high-speed point-to-point communications.  The SpaceWire 

physical layer uses Data-Strobe (DS) Encoded LVDS to communicate serial, full-

duplex, bidirectional data.  Figure 1 shows a notional SpaceWire Link using the 

LVDS physical layer, the operation of LVDS will be explained later in this paper. 

 

100Ω

100Ω

100Ω

100ΩTxData1

TxStrobe1

DIN-

DIN+

SIN-

SIN+

DOUT-

DOUT+

SOUT-

SOUT+

TxData2

TxStrobe2

RxData2

RxStrobe2

RxData1

RxStrobe1

SpaceWire Node1 SpaceWire Node2

 
 

Figure 1. Single point to Point SpaceWire Link 
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The Input/Output signal levels are defined by ANSI/TIA/EIA-644, which is an 

electrical signaling standard only; it does not define a protocol.  Instead, the protocol 

is defined in the SpaceWire Standard specification ECSS-S-ST-50-12C, which is 

derived from IEEE 1355-1995. 

2 LVDS FUNCTIONALITY 

LVDS is a method used to transmit and receive hundreds of megabits per second over 

differential media using a low voltage signal swing (~350mV).   LVDS 

communications are preformed by a driver and a receiver.  The driver accepts a 

standard Complementary Metal Oxide Semiconductor (CMOS) signal and outputs a 

constant current, differential, signal.  The LVDS receiver senses the differential 

voltage across a 100Ω termination resistor and outputs a standard CMOS signal 

equivalent to the supply voltage. The differential aspect of LVDS allows systems to 

run at high data rates, with low switching power, high noise immunity, and common 

mode range. 

 

The LVDS driver works by using NMOS Field Effect Transistors (FETs) to control 

the direction of the constant 3.5mA current source through the termination resistor.  

The driver current, flowing through the 100Ω termination resistor placed across the 

differential inputs of the receiver, generates a +/-350mV I-R drop which is sensed as a 

logic high/low by the receiver.  The LVDS receiver has very high DC input 

impedance, so the majority of the driver’s current flows, in a loop, from the source 

 

 

When the driver output current direction changes, the direction of current flow across 

the termination resistor changes accordingly, creating the logic 1 or 0 state at the 

receiver output.   Figure 3 shows current flow through the driver/receiver system 

resulting in a logic low at the receiver output.  The constant current source drives 

+3.5mA through Q2 and into the negative half of the LVDS bus.  The current reaches 

the termination resistor located at the receiver, flows back through the positive half of 

the bus, returns to the terminal drain of Q3 in the driver, and then passes into the 

driver VSS plane.  The direction of the current flow through the termination resistor 

(negative to the positive), a forward voltage drop occurs and a logical low appears at 

the output (ROUT) of the receiver.  The opposite is true for a logic high on the 

receiver output as shown in figure 4. 
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       Figure 3. Logic Low (zero, 0) State              Figure 4. Logic High (one, 1) State 
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3 LABORATORY EXPERIMENTS OF POWER SUPPLY FAULTS [7] 

UT54LVDS031LV and UT54LVDS032LV devices were used for all laboratory 

experiments.  To demonstrate the devices response to an over voltage failure mode, 

experiments were performed with an 8.0V ramp on supplies and I/Os while 

monitoring the driver inputs (DIN), driver outputs (DOUT+/-), receiver inputs 

(RIN+/- across 100Ω), and receiver outputs (ROUT).  All data was taken at 25°C 

(ambient) with either a 1 minute or 15 second dwell time at each voltage providing 

more than enough time for any overheating damage to present [7]. 

 

One of the experiments conducted in the lab at ambient conditions used the following 

test setup. 
 

100 Ω

LVDS Driver LVDS Receiver

ROUTDIN

VDD(Driver) VDD(Receiver)

DOUT+

DOUT-

RIN+

RIN-

1
2

3

4

5

10MHz 

0 to 3.3V swing

 
 

Figure 5. Example 1 Test Configuration 

DIN = 10MHz with a 0 to 3.3V swing, EN = 3.3V, /EN = 0V 

 

This test evaluated how a standard LVDS driver/receiver configuration responds to a 

driver power supply over voltage fault.  The voltage and current of the driver and 

receiver power supplies was monitored.  The differential output voltages on the 

DOUT+/RIN+ and DOUT-/RIN- signals across the 100Ω termination resistor and the 

output of the receiver (ROUT).  VDD(Driver) was ramped from a nominal 3.3V to 

8.0V.  A standard lab power supply with 2.5A current limit was used for this 

experiment.  The power supply current limiting capabilities prevented VDD on the 

UT54LVDS031LV driver from ramping past 8.0V.   

 

Table 1. Example 1 Test Results 

VDD(Driver) I VDD(Driver) DOUT+

(V)   Point 1 (mA)  Point 1 (VAVG)  Point 2

3.3 12.49 1.30

3.6 13.17 1.33

4.0 13.73 1.35

5.0 15.95 1.47

6.0 23.31 1.83

7.0 261.0 2.51

DOUT-

(VAVG)  Point 3

1.41

1.44

1.46

1.56

1.92

2.61

ROUT

(VAMP)  Point 5

3.12

3.04

3.20

3.02

3.20

3.12

VDD(Receiver)

(V)  Point 4

3.3

3.3

3.3

3.3

3.3

3.3

I VDD(Receiver)

(mA)  Point 4

6.66

6.63

6.62

6.56

6.54

6.07

8.0 500.0 2.38 3.20 3.423.3 10.50

 

Table 1 indicates that the standard LVDS driver/receiver configuration did not 

propagate a high voltage fault when VDD on the driver is ramped to 8.0V.  The 

maximum voltage seen on the DOUT+/RIN+ and DOUT-/RIN- signals are within the 

absolute maximum ratings for both devices.  The high voltage stress on the driver 
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VDD permanently damaged the driver device without propagating the fault to the 

receiver.  The UT54LVDS032LV receiver continued to function after the fault 

condition. 

 

The next experiment conducted in the lab at ambient conditions used the following 

test setup. 

 

100 Ω
ROUT1DIN1

100 Ω
DIN2 ROUT2

100 Ω
ROUT3DIN3

100 Ω
DIN4 ROUT4

LVDS Driver LVDS Receiver

VDD(Driver)=0.0V VDD(Receiver)

3 4

1

2

VSS(Driver) VSS(Receiver)

 
Figure 6. Example 2 Test Configuration 

EN = /EN = 0.0V 

 

This test evaluated the differential lines (DOUT+/RIN+ and DOUT-/RIN-) with the 

receiver powered and the driver unpowered (cold spare mode).  The inputs of the 

driver (DIN) were set to 0.0V and the supply voltage of the receiver, VDD(Receiver), 

was ramped to 8.0V. The voltage and current of the receiver and driver power 

supplies and the +/- differential signals were monitored.  

 

Table 2. Example 2 Test Results 

VDD(Receiver) I VDD(Receiver) VDD (Driver)

(V)   Point 4 (mA)  Point 4 (V)  Point 3

3.3 9.54 0.0

3.6 10.11 0.0

4.0 10.87 0.0

5.0 15.71 0.0

6.0 15.71 0.0

7.0 17.86 0.0

I VDD(Driver)

(mA)  Point 3

0.07

0.11

.10

0.08

0.08

0.11

8.0 19.70 0.0 0.11

DOUT1+

(VAVG)  Point 1

1.23

1.93

2.72

4.83

5.83

6.80

DOUT1-

(VAVG)  Point 2

1.45

1.93

2.73

4.81

5.82

6.77

0.20 0.24
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Table 2 indicates this standard LVDS driver/receiver configuration does propagate 

receiver supply over voltages.  Although over voltages can propagate, faults are not 

propagated based on further analysis.  Additionally, at 8V the voltage on the LVDS 

inputs drops significantly indicating the receivers experience catastrophic failure but 

the voltage out of the LVDS inputs remains within the recommended operating range 

when VDD exceeds approximately 8V. 

 

Another example experiment conducted in the lab at ambient conditions used the 

following test setup. 

100 Ω
DIN1

100 Ω
DIN2

100 Ω
DIN3

100 Ω
DIN4

LVDS Driver

VDD(Driver)

1

2

4

VSS(Driver)

3

10MHz 

0 to 3.3V swing

VDD(Driver) DOUT1+

DOUT1-

DOUT2+

DOUT2-

DOUT3+

DOUT3-

DOUT4+

DOUT4-

5

 
 

Figure 7. Example 3 Test Configuration 

EN = 3.3V, /EN = 0V   

DIN1 = VDD(Driver)  DIN2 = 10MHz with a 0 to 3.3V swing   DIN3 = DIN4 = VSS 

= 0.0V 

 

This test evaluated the differential line (DOUT+ and DOUT-) performance when 

VDD of the driver was ramped from 0.0V to 8.0V. This was accomplished by setting 

the enable signals on the UT54LVDS031LV to EN=3.3V and /EN=0.0V.  Input #1 

(DIN1) was set to VDD(Driver), input #2 (DIN2) was stimulated with a 10MHz 

square wave with 0.0 to 3.3V peak-to-peak, and inputs #3 and #4 were set to 0.0V.  

The voltage and current of the driver power supply, voltage across the termination 

resistor across DOUT1, voltage at DOUT1+, voltage at DOUT2+, and voltage at 

DOUT2- were monitored. 
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Table 3. Example 3 Test Results 

VDD(Driver) I VDD(Driver) DOUT1+

(V)   Point 1 (mA)  Point 1 (VAVG)  Point 2

3.3 16.48 1.36

3.6 17.07 1.42

4.0 17.91 1.45

5.0 24.61 1.61

6.0 86.08 2.12

7.0 169.31 3.64

DOUT2-

(VAVG)  Point 3

1.10

1.10

1.41

1.29

1.82

3.18

8.0 758.81 0.54 0.58

DOUT2+

(VAVG)  Point 2

1.40

1.36

1.07

1.53

1.82

2.16

DOUT1+/-

(VAVG)  Point 2

0.34

0.35

0.37

0.42

0.62

1.16

0.60 0.00
 

 

Table 2 indicates the UT54LVDS031LV does not propagate supply over voltages 

when the voltage on the LVDS input pin is within the recommended range (DOUT2) 

but does propagate over voltages when the LVDS input pin follows the supply 

overvoltage (DOUT1). The voltage across DOUT1’s resistor scales proportionally 

with the overvoltage, showing increasing current due to increasing voltage.   

 

Although over voltages can propagate, faults are not propagated as the current 

sourced by DOUT1+ is returned through DOUT1-. Insufficient current would flow 

into a receiver to cause damage or degradation per section 4.0.  Additionally, at 8V 

the voltage on the LVDS lines drops significantly indicating the drivers experience 

catastrophic failure but the outputs fail to a voltage within the recommended operating 

range for VDD ≥ 8V.  

 

The last example provided for this paper was conducted in the lab at ambient 

conditions used the test setup shown in figure 8. 
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VDD(Receiver)
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RIN2+

RIN2-

RIN3+

RIN3-

RIN4+

RIN4-
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10kΩ

4

100 Ω

 
 

Figure 8. Example 4 Test Configuration 

EN = /EN = 0V 
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This test evaluated the receiver differential inputs (RIN+/RIN-) performance with 

some inputs terminated with 100Ω resistors and one pair of inputs pulled to 0.0V 

(VSS(Receiver)) using 10kΩ resistors, and VDD(Receiver) was ramped from 0.0V to 

8.0V. The voltage and current of the receiver power supply, and selected RIN+/RIN- 

inputs monitored. A standard lab power supply with 2.5A current limit was used for 

this experiment. Table 4 indicates the UT54LVDS032LV does propagate receiver 

supply over voltages out of its RIN inputs.   
 

Table 4. Example 4 Test Results 

VDD(Receiver) I VDD(Receiver) RIN2+

(V)   Point 1 (mA)  Point 1 (VAVG)  Point 2

3.3 7.93 2.36

3.6 7.98 3.33

4.0 8.68 3.87

5.0 13.61 4.90

6.0 33.43 5.87

7.0 84.81 6.85

RIN3+

(VAVG)  Point 3

0.01

0.00

0.03

0.13

0.25

0.48

8.0 1188.28 0.25 0.27

RIN3-

(VAVG)  Point 4

0.01

0.00

0.03

0.11

0.25

0.47

0.21
 

 

Although over voltages can propagate, faults are not propagated as there is 

insufficient current sourced out of the RIN pins, calculated from the voltage drop 

across the 10 kΩ pull-down resistors, to damage or degrade the LVDS outputs per 

section 4.0. Additionally, at 8V the voltage on the LVDS inputs drops significantly 

indicating the receivers experience catastrophic failure but the voltage out of the 

LVDS inputs remains within the recommended operating range when VDD exceeds 

approximately 8V. 

 

This experiment shows that pull-down resistors could be used to preclude receiver 

supply over voltages from propagating to a driver.  However, these are not necessary 

as there is insufficient current to propagate a fault.  Also, the LVDS lines would only 

show the receiver supply overvoltage if the driver was tristated or powered-off, as an 

active driver would overpower the receiver supply over voltages and hold the LVDS 

lines at operating levels. 

 

4 LVDS I/O CURRENT RELIABILITY ANALYSIS 

The metal current density design rules for the 0.25μm LVDS technology allow a DC 

current of 5.98mA on the LVDS I/O while remaining within allowed specifications.  

After reviewing the reliability assessment the UT54LVDS031LV, 

UT54LVDS032LV, UT200SpWPHY01, and the UT200SpW4RTR these devices can 

tolerate 100μA of current per pin indefinitely without damage or degradation for a 15 

year mission.  

 

Additionally, from Table 4, an LVDS receiver experiencing overvoltage could back-

drive up to 57μA per LVDS line to an LVDS driver.  If all four pairs of LVDS lines 

were connected, a total of approximately 460μA could be back-driven.  460μA is 

more than an order of magnitude below the 5.98mA calculated threshold.  Therefore, 
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no faults would be propagated from an LVDS receiver experiencing over voltages to 

an LVDS driver. 

 

5 FAULT CONDITIONS AND RESULTS 

The fault conditions examined focus on demonstrating the response of Aeroflex 

LVDS drivers and receivers to voltage stress above the ABSOLUTE MAXIMUM 

RATING for VDD and the I/O.  The tests were preformed with the 

UT54LVDS031LV and UT54LVDS032LV devices at room temperature (25°C).   

 

The tests described above show that over voltages can be seen on the LVDS I/O, but 

that faults are not propagated because the current sourced over the LVDS lines by the 

part experiencing the overvoltage is not sufficient to cause damage or degradation to 

the other LVDS part.  The experiments also show that sufficiently high voltage 

applied to the device resulted in transistor break down causing permanent damage 

with no overvoltage propagation. 

 

The Aeroflex LVDS drivers are current mode outputs with a constant current source 

capable of driving a 3.5mA nominal current.  The results discussed are not guaranteed 

by Aeroflex.  Any operation outside of the ABSOLUTE MAXIMUM RATINGS, as 

stated in the datasheet and/or SMD may affect device reliability and performance. 
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ABSTRACT 

A new interconnect technique utilizing three-level pulses for transmission of data and clock 

information is presented. This technique is fully compatible with the SW protocol but utilizes 

only one differential data channel. The second channel normally required for the SW 

data/strobe link now operates as a redundant line controlled by special circuitry that monitors 

the integrity of both channels. A transceiver chip that implements a version of the developed 

technique has been designed and fabricated in a 180nm BiCMOS technology suitable for the 

development of space electronics. Following the successful tests of the transceiver, a SW port 

with three-level interface has been designed. 

1 INTRODUCTION 

Performance improvement that is required for the success of future space missions dictates 

the migration from low-speed parallel to high-speed serial data interconnect interfaces. In 

contrast with ground-based electronics, achievement of high data transmission rates in space-

oriented interconnect systems presents a significant challenge due to tight requirements for 

their stability in harsh operational conditions. Application of the existing techniques for 

stability improvement, such as the ones described in [1], inevitably degrades the achievable 

speed-power performance.  

Space plug-and-play avionics is an emerging technology that can alleviate serial data 

interconnect shortcomings in present-day solutions. It is based on the switching fabric active 

backplane architecture with robust high-speed serial interfaces. Electrical and/or optical 

transponders operating with Space Wire (SW) [2], optical SW (SW-Fiber), Fire Wire (FW), 

or Ethernet/Gigabit Ethernet protocols are required to support the associated high-speed data 

interconnects.  

Unfortunately, the achievable performance of the copper-based SW interconnects is limited 

by the specific structure of the interface that requires two differential channels per 

unidirectional link to implement the data-strobe (DS) encoding scheme. Unavoidable 

channel-to-channel skew accompanied by signal degradation during the transmission process 

complicates the clock recovery process and prevents system operation at high data rates.  
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At the same time, the higher flexibility of the electrical SW protocol compared to its optical 

version makes it extremely attractive for applications in both space-oriented and ground-

based systems. This paper presents a novel electrical interconnect technique based on three-

level voltage pulses that facilitates the transmission of both data and clock information 

through one differential channel thus eliminating the channel-to-channel skew problem. As a 

result, operational speed above 1Gb/s can be achieved without modifications of the protocol. 

In addition, the second differential channel can be used as a redundant connection that 

increases the fault tolerance of the SW system. Special link integrity control algorithm and 

circuit have been developed to provide real-time monitoring and activation of the functional 

link on both transmitter and receiver sides.  

The developed interconnect technique has been validated through fabrication of a test 

transceiver chip with three-level input-output interfaces. The chip was designed on the basis 

of a special library of fully-differential CML (current-mode logic) cells and functional blocks 

which utilize SiGe hetero-junction n-p-n bipolar transistors (HBT) as active components and 

poli-Si resistors as loading elements. Those components are available in commercial 

BiCMOS technologies and offer high speed and natural tolerance to harsh environmental 

conditions associated with space missions. Following the successful tests of the transceiver 

chip, a SW port with reconfigurable TL input-output interfaces operating at 1.25Gb/s data 

rate has been designed within the same library of cells and blocks. 

The following sections describe the details of the technique (Section 2), present the design of 

three-level input/output blocks (Section 3) and SW transceiver chip (Section 4), and discuss 

the design of a SW port. (Section 5). 

2 THREE-LEVEL INTERCONNECT TECHNIQUE 

SW protocol relies on the synchronous transmission of two signals, one of which represents 

the actual data and the other one is a logic XOR function of the data and clock signals. The 

combination of those signals provides a possibility to reconstruct both data and clock at the 

receiver side in real time. The same functionality can be achieved with a different three-level 

(TL) interconnect technique illustrated by Fig. 1 [3]. 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Timing Diagram of Three-Level Interface. 

Within this technique, both data and clock information is transmitted through a single 

differential interconnect line. Prior to transmission, the data is processed by an output three-
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level buffer which imposes synchro pulses of increased amplitude onto each odd bit in each 

single-ended data channel if it has a predefined logic value (either “1” or “0”). Differential 

signalling guarantees that the synchro pulses are always present in either the direct or the 

inverted output bit stream as shown in Fig. 1 for synchro pulses represented by higher “1” 

level. The imposed synchro pulses are retrieved from the input data stream by the receiver’s 

three-level input buffer and converted into a half-rate clock signal required by the SW 

protocol.  

The main difficulties of TL technique implementation are the extraction of single-ended 

synchro pulses and minimization of the recovered clock jitter primarily associated with the 

pattern-dependent data jitter. 

3 THREE-LEVEL INTERFACE IMPLEMENTATION 

The synchro-pulses in TL interface should be represented either by higher levels of logic “1” 

state or lower levels of logic “0” state.  At the same time, the differential bit stream must be 

compatible with the LVDS (low-voltage differential signalling) electrical interface [4] as 

defined by the SW standard [2]. To overcome this difficulty, a pseudo-LVDS TL output 

buffer has been designed. The buffer incorporates a complex logic function of clock “c” and 

data “d” signals as shown in Fig. 1a. During the periods of negative input clock signal, it 

generates a logic “1” level equal to “Vcc”-0.4V and a logic “0” level equal to “Vcc”-0.8V on 

the external 100Ohm load. During the periods of positive input clock signal, the levels are 

changed to “Vcc”-0.6V an “Vcc”-1.2V respectively. The resulting signals are shown in Fig. 

1b, where filled regions represent the overhead synchro pulses. 

   

a.                                                                 b.        

Fig. 2. TL Output Buffer (a) and Its Signals (b). 

 

The input TL buffer needs to detect the single-ended overhead pulses and convert them into a 

half-rate clock signal, as well as to process the differential data signals as normal LVDS 

signals. To perform these functions, the block includes a universal input buffer with high 

tolerance to common-mode voltage variation [5] that processes the data signals, and a dual 

comparator that includes two individual comparators connected in series as shown in Fig. 3. 

The first comparator compares both direct “dp” and inverted “dn” data streams with a 

threshold voltage “VCM” derived from the input minimum voltage level detected by a peak 

detector. The resulting signals “q1p” and “q1n” are combined by the logic OR function and 

compared by the second comparator to the threshold voltage “VTH” derived from the internal 
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CML logic levels. This dual-threshold technique is self-adjustable to the input common-mode 

voltage variation within the limits defined by the CML buffer and provides a reliable clock 

reconstruction within the temperature range from -25°C to 125°C, ±5% of power supply 

variation, and ±3σ process parameters variation. 

 

Fig. 3. Dual Comparator. 

Computer simulations of the TL interface with realistic package equivalents have proved the 

acceptable quality of the detected clock signal. The worst-case jitter of the signal does not 

exceed 0.05UI at the frequency of 1.25GHz. 

4 TRANSCEIVER TEST CHIP  

The discussed TL input/output blocks were incorporated into a complex transceiver chip 

designed in a commercial 180nm SiGe BiCMOS technology. The chip consists of a number 

of blocks including a multiplexer with TL output interface, a demultiplexer with TL input 

interface that converts the input data into 40-bit wide parallel output words, and a phase-

locked loop (PLL) that uses the reconstructed clock as a reference signal. A microphotograph 

of the chip is shown in Fig. 4. 

 

Fig. 4. Microphotograph of the Transceiver Chip. 

In this version of TL interface, the overhead pulses are imposed onto each 40-th bit of the 

data bit stream. The fabricated chip was packaged into a 176-pin TQFN package and tested in 

a loop mode when the multiplexer’s output signal is externally applied to the inputs of the 
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demultiplexer. The results presented in Fig. 5 demonstrate the transceiver operation in case of 

equal and opposite data bits overlapping the synchro pulses. These bits are toggling in each 

40-bit word. The oscilloscope is triggered by a divided-by-40 clock signal, which causes the 

double lines on the screen. 

 
 

a.                                                                                    b. 

Fig. 5. Oscilloscope Screen Shots with Equal (a) and Opposite (b) Bits Corresponding to Synchro 
Pulses. 

The top two lines (red and orange) show the direct and inverted TL signals at the multiplexer 

outputs. The yellow lines show the demultiplexer output signal corresponding to one of 

multiplexer’s toggling input signals. The bottom line (green) shows the synchronized 

divided-by-40 clock from the demultiplexer’s PLL in a lock state. 

5 SW PORT DESIGN  

Successful test results of the transceiver chip have provided the basis for the low-risk design 

of the SW port that may serve as a part of a SW switching fabric or other SW devices. The 

port is designed within the same CML library of cells and blocks. The main parts of the port 

include a reconfigurable TL transmitter (RCT) with a line integrity control circuitry (LIC) 

and a reconfigurable TL receiver (RCR) with the same circuitry. The port operates at 

maximum data rates up to 1.25Gb/s. Its block diagram is shown in Fig. 6.  

5.1 RECONFIGURABLE TRANSMITTER AND RECEIVER  

RCT operates either as a standard SW device where it transmits data and strobe signals 

through two differential output lines, or as a TL device where it imposes one-bit long synchro 

pulse on top of each odd bit in both direct and inverted data stream if the corresponding bit 

has the logic “0” value. The type of the operational mode is defined by control signal “ms2”.  

Distribution of the output signals among output channels is defined by control signal “ms1T”. 

In the normal SW mode, this switch defines the assignment of data and strobe signals to two 

output channels. In the TL mode, it works in combination with the “line hardware error” 

signals “lheT” and defines the active TL channel. Those error signals indicate faulty states of 

output differential line and are generated by LIC block of RCT that monitors the output lines 

for short or open conditions. 
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Fig. 6. Block Diagram of SW TL Routing Port. 

RCR can operate in the same two modes depending on the state of “ms2” signal. In the 

normal SW mode, RCR reconstructs the incoming data and half-rate clock signals using the 

standard XOR logic function. In the TL mode, it extracts the same half-rate clock from the 

overhead synchro pulses as described in Section 3. RCR also includes the LIC block identical 

to that of RCT. The “ms1R” signal is used for activation of a certain input channel or 

identification of data and strobe signals. The optional “loop-back test” mode may be activated 

by the “LBT” signal. In this case, the transmitter outputs are sent back to the receiver 

bypassing the SW interface. 

5.2 LINE INTEGRITY CONTROL  

The developed algorithm for the integrity control of the port’s input/output lines is based on 

voltage logic level monitoring. The detectable signal line states of the LVDS-compatible TL 

interface are reproduced in Table 1, where “dp” and “dn” are the direct and inverted inputs, 

“qp” and “qn” are the direct and inverted outputs, ΔVL= V1
-V0

 is the voltage logic swing, and 

VH represents the positive supply voltage. 

Table 1. Line State Detection Conditions. 
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Looking at Table 1, it is obvious that three independent line controllers are needed at both the 

transmitter and receiver sides. These circuits are implemented as voltage comparators with 

threshold voltages V
R1

=VH-ΔVL/2-ΔVEF, V
R2

=(VH+VL)/2, and V
R3

=Vcc/2. They generate a 

combined error signal corresponding to any of the line faulty condition. This signal can be 

used by external processor for the activation of the operational interconnect line.  

5.3 LAYOUT DESIGN  

The layout of the port has been designed using standard cells from the CML library. The top 

view of RCT and RCR layouts are shown in  Fig. 7. 

   

a.                                                                              b. 

Fig. 7. Layouts of RCT (a) and RCR (b). 

The simulation of the port’s extracted schematic demonstrated its operation at data rates up to 

1.25Gb/s. The complete port is ready for the integration into higher-level designs as a macro 

block. Its implementation in the CML basis makes it directly suitable for space-oriented 

applications which require tolerance to harsh environmental conditions. 

6 CONCLUSIONS 

A novel technique for transmission of SW-compatible data and clock information through a 

single differential interconnect line has been developed and implemented as a transceiver test 

chip and as a SW routing port. Both designs are made within a special CML library of cells 

and blocks that is developed in a 180nm BiCMOS technology.  

Utilization of this technology makes the designs suitable for space-oriented applications 

which require tolerance to harsh environmental conditions. 

Fabrication and testing of the transceiver chip has proven the performance of the developed 

technique. 

A novel algorithm and circuitry for the LVDS line integrity control have been developed. 

This technique allows for the detection of the line’s faulty condition and its replacement with 

the second line defined in the SW standard but not required for the data transmission through 

the novel three-level interface. 
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ABSTRACT 

A space-qualified SW-compatible and Ethernet-compatible Transponder ASIC with 1.25Gb/s 

LVDS serial input/output interfaces and 10-bit wide 125Mb/s CMOS parallel input/output 

interfaces is presented. The chip with power consumption below 150mW utilizes a special 

SCL library of cells and blocks including proprietary extra low-power LVDS buffers. It 

features a clock multiplication unit on the transmitter side and a clock and data recovery 

block on the receiver side. Three built-in test modes provide a possibility for a detailed self-

testing of the part. The Transponder fabricated in a 90nm CMOS technology and packaged in 

a 64-pin QFN plastic package has demonstrated a reliable operation during laboratory tests. 

1 INTRODUCTION 

Performance improvement that is required for the success of future space missions dictates 

the migration from low-speed parallel to high-speed serial data interconnect interfaces. In 

contrast with ground-based electronics, achievement of high data transmission rates in space-

oriented interconnect systems presents a significant challenge due to tight requirements for 

their stability in harsh operational conditions. Application of the existing techniques for 

stability improvement, such as the ones described in [1], inevitably degrades the achievable 

speed-power performance.  

Space plug-and-play avionics is an emerging technology that can alleviate serial data 

interconnect shortcomings in present-day solutions. It is based on the switching fabric active 

backplane architecture with robust high-speed serial interfaces. Electrical and/or optical 

transponders operating with Space Wire (SW) [2], optical SW (SW-Fiber), Fire Wire (FW), 

or Ethernet/Gigabit Ethernet protocols are required to support the associated high-speed data 

interconnects.  

Unfortunately, the achievable performance of the copper-based SW interconnects is limited 

by the specific structure of the interface that requires two differential channels per 

unidirectional link to implement the data-strobe (DS) encoding scheme. Unavoidable 

channel-to-channel skew accompanied by signal degradation during the transmission process 

complicates the clock recovery process and prevents system operation at high data rates.  
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All electrical interconnects are also susceptible to EMI, which presents a significant danger to 

spacecraft’s electronics. Taking into consideration the described limitations, one of the most 

suitable solutions is the replacement of electrical links with fiber-optical lines. This approach 

requires the development of an electrically DC balanced transponder that interacts with 

standard optical modules on the high-speed side and standard data processors (e.g. FPGA) on 

the low-speed side. 

This paper presents a design of such transponder with the characteristics detailed in Table 1: 

Table 1. System Specifications. 

Parameter Value Units Comments 

Data encoding type 8B10B   

Parallel interface size 10+1 bits Data and Clock 

Parallel interface type 1.8V CMOS   

Low-speed data rate 125 Mb/s  

Serial interface type LVDS  Low-voltage differential 

signalling [3] 

High-speed data rate 1.25 Gb/s  

Power supplies 1.8 V ±5% 

Power consumption <150 mW  

The following sections describe the transponder architecture (Section 2), explain the utilized 

library-based design approach and discuss the library structure (Sections 3.1), describe chip 

design (Section 3.2) as well as its fabrication and testing (Section 4). 

2 TRANSPONDER ARCHITECTURE 

The required functionality can be naturally achieved in a 2-channel serializer/deserializer 

(SERDES) system shown in Fig. 1. To process the 8B10B data, SERDES includes a 

transmitter channel (Tx, green blocks in Fig. 1) with 10-to-1 MUX CMU (multiplexer with 

internal clock multiplication unit), CMOS input parallel interface (CMOS IB), 2-bit FIFO 

(first-in-first-out), and an LVDS output buffer (OB); as well as a receiver channel (Rx, brown 

blocks in Fig. 1) with CDR (clock and data recovery unit), 1-to-10 DMUX (demultiplexer), 

LVDS input buffer (IB), and CMOS output parallel interface (CMOS OB). Two internal 

phase-locked loops (PLLs) in CMU and CDR synchronize the transponder operation in 

respect to the external low-speed reference clock “cref”. Input parallel data “d00-09” initially 

aligned to the external input low-speed clock “cli” is resynchronized in FIFO by the internal 

clock “crd”. FIFO reset performed by “res” signal, as well as error indicator “err” are 

incorporated into the design. To increase the flexibility of parallel interfaces “d00-09” and 

“q00-09”, bit order inversion function controlled by “bitordt” and “bitordr” signals is 

implemented in both MUX and DMUX.  

Three internal loop-back test modes are incorporated into the design. In the first mode 

activated by “lbt1” signal, the parallel data from DMUX outputs and corresponding low-

speed clock “cb1” are redirected to MUX inputs through selector SEL1. In this mode, high-

speed serial output signal “qhs” should be compared with high-speed input serial signal “dhs” 

usually provided from a PRBS (pseudo-random binary sequence) generator. In the second 

mode activated by “lbt2” signal, the high-speed signal from MUX output is looped back to 

DMUX input through selector SEL2, and parallel CMOS input and output interfaces are used 

for the control of transponder operation. The third test mode activated by “lbt3” signal is 

similar to the second test mode but provides a by-pass of CDR. In this mode, the output data 
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from MUX and corresponding clock “cb3” are delivered to DMUX inputs through selector 

SEL3. 

 

SEL 2 

10:1 MUX 
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1:10 DMUX  
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Transponder 
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Fig. 1. Transponder Top-Level Block Diagram. 

3 LIBRARY-BASED DESIGN APPROACH 

The complete SERDES is designed within a library of basic cells and functional blocks that 

has been developed in a 90nm CMOS technology. This approach allows for application of 

previously verified cells and block in new products, which significantly reduces their cost and 

design time. All cells and blocks in the developed library utilize custom-built transistor 

structures that provide an improved tolerance to space environmental conditions.  

3.1 LIBRARY OF BASIC CELLS 

CMOS logic is a natural implementation of Si-based CMOS technologies [3]. This single-

ended architecture based on FETs with gate lengths of 90nm and below is now utilized in 

most of the modern IC products. At the same time, the short-channel devices suffer from 

increased sub-threshold currents and low breakdown voltages. They also cannot overcome 

the natural drawbacks of the single-ended circuitry that includes generation of a switching 

noise that is increasing with the operational speed, and distortion of the signal’s duty cycle. In 

addition, uutilization of space-oriented protection techniques usually limits the minimum 

transistor width and thus negatively affects the operational speed of the corresponding 
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circuits. It should be noted that the absence of DC power consumption does not help the 

overall performance of the CMOS circuits due to significant increase of dynamic power 

consumption at higher speeds. In this particular design, analog blocks represented by two 

PLLs are very sensitive to any source of noise and require a quieter on-chip environment. 

The alternative for CMOS is the differential source-coupled logic (SCL) architecture [5-6]. 

This logic is based on differential current switches with one or more pairs of switching n-

FETs which redistribute a stabilized current generated by a special current source. SCL 

architecture overcomes the problems of the switching noise and duty cycle distortion at the 

price of certain DC power consumption. SCL circuits are less sensitive to sub-threshold 

currents and can potentially achieve higher operational frequency. Unfortunately, the limited 

transconductance of FETs minimizes the architectural advantages due to the requirements for 

a higher voltage logic swing (not less than 350mV) to fully switch the tail current from one 

branch of the switch to the other. The driving capability of SCL logic gates is also relatively 

low, thus resulting in increased power consumption. This architecture is suitable for the 

operational speeds in the range of 10Gb/s, but its performance degrades rapidly at higher 

frequencies. 

The comparison of two architectures was performed on two sets of frequency dividers-by-10 

designed and fabricated in the same 90nm technology. The test results summarized in Table 2 

show that the power consumption of the CMOS version is close to that of the SCL one at 

frequencies close to 700MHz. It can be estimated that the SCL version is more power 

efficient at speeds above 1GHz. In addition, the SCL architecture is more suitable for the 

implementation of complex logic functions as can be seen from the number of gates required 

for the divider design.  

Table 2. Divider Comparison 

Parameter CMOS Version SCL Version 

Operational frequency 700MHz 720MHz 

Power consumption ][72.0][6.0][2.1 mWmAV   ][8.0][5.0][6.1 mWmAV   

Gate count 61 21 

 

Based on the above considerations, the SCL architecture has been selected for the 

transponder design. The developed library includes 11 families of cells with different current 

levels optimized for frequencies from DC to more that 2GHz: 2-input AND gates, 1-input 

Buffers with and without input-level compensation diodes, 2-input dual Source Followers – 

level shifters, D-Latches with and without set/reset functions, 2-to-1 Multiplexers, RS Flip-

Flops, Generators of the top logic “0” voltage level V0t
=VCC-ΔVL, 2-input XOR gates, and 2-

input SCL-to-CMOS converters.  

All cells operate from a 1.8V power supply with tail currents generated by two-transistor 

cascode current sources controlled by temperature-stabilized band-gap reference sources. The 

achieved voltage accuracy is within ±1.5% over the temperature range of -55
o
C to 125

o
C, 

±10% variation of supply voltage, and ±3σ variation of technological parameters. An 

example of the designed cell is shown in Fig. 2. This stabilization allows for the minimization 

of the internal voltage swing to 350mV, which improves the speed performance of the 

circuits. As a result, a cell with a current level of 280µA can reliably process signals with a 

frequency up to 1.3GHz. 
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Fig. 2. SCL Buffer. 

The library also includes extra low-power 1.3Gb/s LVDS output buffers and universal input 

buffers with increased tolerance to common-mode voltage variation, which are described in 

[7-8]. The output buffer operates from a 1.6V supply voltage generated by an internal voltage 

source with feedback stabilization. 

3.2 UPPER-LEVEL BLOCKS 

The most critical parts of the transponder are CDR and CMU. CDR uses the architecture with 

a phase – frequency detector (PFD), Alexander phase detector (PD), and 2-input charge pump 

as shown in Fig. 3.  

 

Fig. 3. CDR Architecture. 

The 1.25GHz voltage-controlled oscillator (VCO) is designed as a ring oscillator with 

balanced loadings to ensure matching operational modes for all stages of the ring. The tuning 

range from 950MHz to 1.5GHz has been achieved with 5-stages of a proprietary voltage-

controlled delay cells. The sell is designed as SCL D-type latch with a linearized clock 

differential pair that operates as the delay control current switch. The schematic of the delay 

cell is shown in Fig. 4. 
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Fig. 4. Voltage-Controlled Delay Cell. 

The CMU utilizes similar VCO and PFD blocks but a different 1-input charge pump. All 

other blocks are designed from standard library cells.  

MUX and DMUX utilize a combinational tree-register architecture due to the ratio not equal 

to a power of 2.  

FIFO includes 10 identical blocks for processing 10 bits of data and an error generation 

block. Each FIFO block writes in a bit of data using the input clock “cwt” and outputs the 

same bit after its realignment to the output “crd” clock. The initial reset of the block sets the 

read and write events as far as possible on the time scale and then allows for ±(T-tsu) phase 

deviation between two clocks. Here T is the clock period and tsu is a setup time of internal 

flip-flops. If the accumulated phase difference exceeds the specified value, the error generator 

provides a special error signal. This block operates as a phase detector and monitors the phase 

difference between two clocks. The phase difference equal or less than tsu sets the block’s 

output to logic “1” state that indicates the error condition. Assuming slow phase changing 

rate (temperature or similar conditions), the block is designed to deliver the error signal 

before any actual errors in the data sampling may occur. 

4 CHIP FABRICATION AND TESTING 

The complete transponder has been fabricated in a 90nm technology. The chip with the 

dimensions of 2.4x2.4mm2
 has 68 bonding pads, has been packaged into a 68-pin QFN 

package, and consumes about 80mA of current from a single 1.8V power supply.  

The test board shown in Fig. 5 incorporates the transponder chip, an SFP MSA optical 

module, SMA connectors for low-speed and high-speed data and clock signals, and control 

switches. The device was tested in electrical and optical modes and demonstrated the 

operation in accordance with computer simulations. 

SpaceWire Components

132



 

Fig. 5. Transponder Evaluation Board Configured For Optical Testing. 

The sample results of the electrical test shown in Fig. 6 demonstrate the output low-speed 

clock and serial high-speed data with the rate of 1.25Gb/s. 

     

Fig. 6. Output Low-Speed Clock (a) and 1.25Gb/s Output Data (b). 

In the optical mode, the output LVDS signal of the Transmitter is converted into light by the 

optical module and sent through the fiber back to the optical input of the same module. The 

converted electrical signal is processed by the Receiver and the outputs of the receiver are 

compared to the Transmitter input signals. This external loop-back test has proved the 

complete functionality of the designed transponder. 

The chip was also tested in the space-imitation environment and demonstrated less that 1% 

deviation of its parameters from their normal values. 

5 CONCLUSIONS 

A space-qualified SW-compatible transponder chip designed and fabricated in a 90nm 

technology has demonstrated a full functionality in normal and space-imitation environments 

including the data rate of 1.25Gb/s at less than 150mW power consumption. The design is 

based on a special SCL library of cells and functional blocks utilizing n-FETs as active 

components, which is ready for application to other designs of similar mixed-signal products. 
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ABSTRACT 

The UT200SpW4RTR[2] is a four port SpaceWire router that is capable of operating 

at data rates from 10 to 200 Mbps, supporting path, logical, and group adaptive 

routing and offers an effective and simple solution to many networking requirements.  

This router has a total of 5 ports, 4 are SpaceWire compatible ports and the 5
th

 is a 

parallel HOST port.   

 

The HOST port allows access to the routers configuration and status registers as well 

as access to any of the 4 SpaceWire ports.  Data may be passed from the HOST port 

to the SpaceWire ports and vice versa.  HOST ports of multiple UT200SpW4RTR 

devices may be interfaced together using an FPGA which will route data between 

multiple routers.  The interfacing FPGA will need to contain logic that will support 

reads and writes from the UT200SpW4RTR HOST ports as well as a lookup table 

block.  The look up table block will contain the routing information such that data can 

be passed to and from the HOST ports of multiple routers.   

1 UT200SPW4RTR BASIC FUNCTIONALITY 

The Aeroflex 4-port router implements a non-blocking crosspoint switch and a 

"Round Robin" arbitration scheme allowing all 5 receive ports access to all 5 transmit 

ports.  Path and logical addressing are supported per ECSS-E-ST-50-12C [1], and 

lookup table storage is replicated five times giving each receive port a dedicated block 

of memory for logical addressing. Configuration of lookup tables, as well as access to 

internal registers may occur through any of the 5 ports using a simple configuration 

protocol. A group adaptive function is also provided for 2 ports when implementing 

logical addressing. 

Each of the four SpaceWire ports is capable of running at an independent speed. This 

allows for systems to be configured with nodes/instruments running at different 

speeds.  

 

The HOST port of the 4-port router is composed of both a receive and transmit FIFO.  

The transmit FIFO (inputs to router) are write capable by the external hardware.  Full 

and Almost Full flags are provided to help the user prevent overwriting the FIFO and 

should be monitored by external hardware or the interfacing FPGA. Data will be 
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written into the FIFO on the rising edge of the clock when /TX_PUSH is “Low”.  The 

receive FIFO (outputs from router) receives data from one of the SpaceWire ports and 

is then read from the receive FIFO on the rising edge of the system clock when 

/RX_POP is “High”.  FIFO status flags Almost Empty and Empty flags are provided 

for proper data management.   

 

The HOST port transmit interface is connected to a read logic block that controls 

SpaceWire data flow and determines the addressing scheme being used for the packet 

received,  where as the HOST port receive interface is connected to a write logic 

block to the receive FIFO interface.  Each of the SpaceWire ports on the 

UT200SpW4RTR contain a read logic block.  The basic concept of the read and a 

write logic blocks should be replicated in the FPGA.   

 

Read logic blocks are connected to each of the SpW ports as well as a the HOST port.  

The SpaceWire ports read logic block have internal FIFO monitor flags that can not 

be accessed externally.  The read logic block monitors the empty flag on the receive 

FIFO and reads a byte of data whenever the FIFO is not empty.  This block also 

checks the first byte of data after an EOP to determine the port address or whether a 

configuration transaction will be initiated.  For Path or Logical addressing, the Read 

Logic Block uses the first byte of data after an EOP/EEP. 

 

The write logic blocks control the data to the transmit FIFOs and the HOST receive 

port and the SpW transmit ports.  A "Round Robin" arbiter manages access and 

makes sure only one Read Logic Block accesses the Write Logic Block.  If more than 

one receive ports is waiting to send data out of the same output port, the arbiter gives 

each receive port equal opportunity for access.   

 

The arbiter starts counting whenever a request for that port is received from any of the 

five receive ports. The count is from Port 1, Port 2, etc, until the count reaches Port 5, 

looks for configuration commands, and then starts over.  The configuration block will 

be accessing the Write Logic Block when read configuration packets are requested.  

The HOST port of the UT200SpW4RTR will allow the system designer to interface 

multiple 4-port routers together with out compromising the count of the SpaceWire 

capable ports. 

2 SYSTEM ARCHITECTURE 

Figure 2 shows a notional diagram using three UT200SpW4RTR routers interfaced to 

an FPGA, a microprocessor could be controlling the system.  This example generates 

a 12-port router using three 4-port routers.  These concepts can be applied to generate 

a router with a larger port count. 

 

The interfacing FPGA should contain a look up table space that is responsible for 

routing data between the HOST ports of the 4-port routers, as well as, read and write 

logic blocks as described insection1.0.  The look up table space should be configured 

such that a given logical address will be routed to the HOST port of the destination 4-

port router.  The look up space can be sized based on the number of 4-port routers 

being interfaced to the FPGA. 
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Figure 2. Notional Diagram of FPGA requirements 

 

The HOST port interfaces of the UT200SpW4RTR devices, including 

TX_DATA[8:0], /TX_PUSH, TX_FULL, TX_AFULL, RX_DATA[8:0], /RX_POP, 

RX_EMPTY, RX_AEMPTY, should be connected to the FPGA for data transfer and 

status monitoring.  The read and write logic blocks will control the flow of data from 

one HOST port to the other.  Figure 3 shows a block diagram of the main logic block 

requirements needed to handle arbitration, routing, and data transfer in the FPGA. 

 

Table 1 shows an example of the contents required for the FPGA look up table space. 

Each of the 12 SpW ports and 3 HOST ports requires a unique look up table location, 

to ensure proper data routing. Using Table 1, assume SpaceWire port 6 (port 2 on 

Router 1) has data that needs to be routed to SpaceWire port 11 (port 3 on Router 2).  

A packet with header 0x30 is sent to Port 6. Router 1 decodes lookup table address 

0x30 and sees that data should be sent to the HOST port or local port 5 of Router 1.  

The FPGA rd_Logic_1 read logic block decodes packet header 0x30 and sees that 

data should be sent to Router 2 wr_logic_2. Router 2 HOST port decodes lookup table 

address 0x30 and sees that data should be sent to Port 11 (port 3 on Router 2).  The 

data packet will be routed out on Port 11 of the expanded router. 

 

Table 1. Example Lookup Table Space. 

 

Address Router 0 Router 1 Router 2 FPGA SpW Port

0x20 1 HOST HOST 1 1

0x21 2 HOST HOST 1 2

0x22 3 HOST HOST 1 3

0x23 4 HOST HOST 1 4

0x24 HOST 1 HOST 2 5

0x25 HOST 2 HOST 2 6

0x26 HOST 3 HOST 2 7

0x27 HOST 4 HOST 2 8

0x28 HOST HOST 1 3 9

0x29 HOST HOST 2 3 10

0x30 HOST HOST 3 3 11

0x31 HOST HOST 4 3 12  
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3 SYSTEM PERFORMANCE CONSIDERATIONS 

The routing of SpW data to and from each of the router devices should follow a flow 

similar to that shown in Figure 3.  The flow in Figure 3 may be modified to optimize 

data through put and overall system efficiency.  

 

The flow of data to the interfacing FPGA can start with the FPGA in idle state, where 

the /RX_POP FIFO flag is being monitored for incoming data.  Once a /RX_POP 

FIFO flag is asserted active low, the FPGA will decode which 4-port router has the 

active /RX_POP flag.  After the active router is identified the FPGA starts registering 

the data present on the RX_DATA[8:0] lines until an End of Packet (EOP) is 

received. 

 

When an EOP is received the first byte of data needs to be examined.  The first byte 

of data should contain the logical look up information as described in Table 1.  Byte 1 

will then be compared to the FPGA Logical Look up table address such that the data 

will be routed to the correct destination 4-port router. 

 

Assuming the first byte of data contains a valid router address the FPGA needs to 

monitor the corresponding 4-port routers TX_FULL to ensure that there is available 

space in the routers HOST transmit FIFO.  The FPGA then asserts the corresponding 

4-port routers /TX_PUSH FIFO flag, this starts the transfer of data from the FPGAs 

register to the destination 4-port router.  Once an EOP has been received by the 

destination 4-port router the FPGA returns to the idle state and wait for the next data 

transaction to occur. 
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Figure 3.  FPGA Data Handling Flow Diagram 
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4 CONCLUSION 

Interfacing multiple UT200SpW4RTRs together using the HOST port offers a simple 

solution to increase port count.  The HOST ports should be interfaced together using a 

FPGA that will act as an arbiter, equipped with look up tables, between the multiple 

UT200SpW4RTR devices. 

 

The interfacing FPGA needs to contain logic supporting reads and writes to and from 

the HOST ports read and write FIFOs.  There will be a look up table block which 

contain the routing information such that data can be passed to and from the HOST 

ports of multiple routers.   
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ABSTRACT 

There are two SpaceWire based processors in Astrium. One is named SCOC3 and one is 

named MDPA. SCOC3 uses LEON3-FT and MDPA uses LEON2-FT, both processors are 

based on SPARC V8 standard.  

The main application of SCOC3 is platform while MDPA's main application is payload. The 

paper describes the different interface modules used to achieve the functionality and also the 

commercialisation aspects of the two processors. 

MDPA (Multi-DSP/micro-Processor Architecture) is a highly integrated System-on-Chip 

system, which is an advancement on the architecture developed and used on the Inmarsat4 

DSP payload. The MDPA is a concept based on a matrix of data processing nodes 

interconnected using SpaceWire (SpW), with external SpW interfaces to enable connection to 

other telecommunication, earth observation or science payload subsystem. An MDPA node is 

in effect a system-on chip which incorporates a highly integrated DVB-S modem co-

processor combined with a powerful LEON2-FT microprocessor function and relevant 

interfaces all integrated on the same device.  This architecture acts as the controlling unit for 

the Data Path Subsystem (DPS) within the frame of the next generation of digital 

telecommunication payloads. Additionally the MDPA concept is laid out for high end control 

applications or medium rate data processing for earth observation or science payloads. 

The 8 SpaceWire interfaces can be used to interconnect several MDPA nodes to a multi-

processor configuration. This increases the overall processing performance and enhances the 

processing redundancy since a faulty node can be replaced by another one. The routing 

capabilities support the communication of the nodes with low processor interaction. In 

addition the high number of SpaceWire interfaces allows connection of several remote 

controlled devices for command and monitoring of subsystems. 

The modem function is implemented as hardwired block on-chip. Other devices such as 

GNSS receivers or reconfigurable co-processors can be used externally and controlled via 

SpaceWire. 

 

SCOC3 is based on 7 independent AMBA controllers programmed individually by the 

SPARC processor. They work by using DMA mechanisms to access a specific memory and to 

free the processor. They are allocated to CCSDS communications, I/O User communication, 

Reconfiguration of satellite’s system and tests links. 

All these SpaceWire links are compliant to the last ECSS standard and are RMAP compatible. 
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MDPA Technical Overview  

MDPA is a highly integrated System-on-Chip system. This architecture offers the benefits of 

efficiency and the savings provided by a hardwired DSP and the flexibility offered by a 

programmable microprocessor system, joint together using state-of-the-art interconnection IP.  

The main tasks of MDPA are  

 (de-)modulation and (de-)coding capabilities for regeneration of telecommand and 

generation of telemetry channels  

 Supervise, configure and monitor the Data Path Subsystem (DPS)  

 Interface with spacecraft central computer 

The functionality is provided by means of the following functions, integrated into a single 

chip. 

 The fault tolerant microprocessor core LEON2-FT 

 A digital signal processing module 

 Various interfaces (SpaceWire with routing capabilities, MilBus, CAN bus) 

 

A MDPA blockdiagram is shown in the next figure. 

 
 

MDPA Processor core 

The processor core is based around the LEON2-FT using one AMBA AHB bus and two APB 

buses. The APB buses are connected via bridges to the AHB. The following main 

communication interfaces are provided 

 8 SpaceWire links 

 2 redundant MILBUS 

 1 CAN bus 

One set of SpaceWire interfaces are used to interconnect several MDPA nodes to a multi-

processor configuration. This increases the overall processing performance and enhances the 

Fault Detection, Isolation and Recovery (FDIR) capabilities since a faulty node can be 

replaced by another one. The other SpaceWire interfaces are routed to the Data Path 

Subsystem carrying the switches and beamformer configuration data.  

The MDPA contains a CAN bus interface for low data rate data transfers to nodes and 

peripherals. The Service Interface (test interface) based on SpaceWire is used for advanced 

software debugging support as memory load commands etc. with 100 Mbps data rate. 

 

SpaceWire Components

144



MDPA DSP module 

The DSP module is equipped on each MDPA node and demodulates and decodes the 

incoming time-division multiplex (TDM) telecommands coming from the Network Control 

Center. Additionally the data dedicated for downlink telemetry are coded and modulated. 

 

 

SCOC3 Technical Overview  

The Satellites are controlled via a platform computer that permits the control of the satellite 

(attitude, orbit, modes, temperatures …) with respect to its payload mission (communication, 

earth observation, scientific mission). The platform computer is connected to the satellite and 

the ground control via digital links and executes onboard software. On a hardware point of 

view, it gathers a lot of digital functions, usually dispatched on numerous devices, in a single 

device. 

At architectural level there are two memory interfaces, one dedicated for the LEON3-FT and 

another one for the peripheral IOs (SpaceWire, 1553 mil-bus, TM/TC) and an AMBA 

architecture/DMA for the performance. 

A SCOC3 blockdiagram is shown in the next figure. 

 

SCOC3 Processor core 

SCOC3 is based on LEON3-FT. There are two AMBA AHB buses, one dedicated to the 

processor and one to interfaces functions. Both are linked by a bridge. They are used to 

transfer data. There is an APB bus for configuration of functions. APB and AHB are linked 

by a bridge. 

The following main communication interfaces are provided 

 7 SpaceWire links 

 2 redundant MILBUS 

 2 CAN bus 

 

The 7 SpaceWire links are allocated to different functions. Two are allocated to TM/TC, two 

for cross-strapping and the others are user's free. 
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The implemented CCSDS TM/TC functions are dedicated to satellite/ground communications 

through the satellite transponder. These functions work either with the processor or in stand 

alone. There is a specific CCSDS TM/TC area dedicated to communication between the 

satellite and the ground through the satellite transponder.  

 

Technology and Packaging 

MDPA and SCOC3 are realised as ASICs in Atmel's space qualified 180 nm technology, 

called ATC18RHA. MDPA is delivered in a CQFP 352 pin package and SCOC3 in a 472 pin 

Column Grid Array  package (CGA). 
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ABSTRACT 

This paper presents a high performance Data Processing Unit (DPU) with a 

SpaceWire RMAP Interface. Over 1000 MIPS / 800 MFLOPS performance at 800 

MHz CPU clock is achieved with a high performance PowerPC CPU. The DPU has 

three SpaceWire links operating at up to 100 Mbits/s, two of which with RMAP. 

These are used to connect the DPU to other SpaceWire nodes. The DPU’s 100 Mbits/s 

RMAP ports can be RMAP Initiator, an RMAP Target or both. The DPU has been 

developed for use on the MARC demonstrator. 

The SpaceWire RMAP port of the DPU is implemented by using ESA’s SpaceWire 

RMAP IP Core. This allows that the RMAP port of the DPU supports both the 

Initiator RMAP Interface and Target RMAP Interface. The VHDL RMAP IP Core is 

integrated in the DPU system by VHDL user logic which allows CPU / user software 

to access all the RMAP IP functions and generates interrupts for the CPU for fluent 

software execution. 

The RMAP IP Core along with the CPU bus interface, memory interfaces with DMA, 

UART and Interrupt controller are implemented in Actel’s Axcelerator AX2000 and 

ProASIC3E A3PE3000 FPGAs. 

1 INTRODUCTION 

1.1 CPU 

Central Prosessing Unit (CPU) of the DPU is MPC7448, a member of PowerPC 7450 

RISC Microprocessor family. The processor has a superscalar architecture that can 
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dispatch and complete three instructions simultaneously, and thus its performance is 

typically higher than one MIPS / MHz. The CPU contains several execution units 

including an IEEE-754 compliant double-precision Floating Point Unit (FPU), 32 

kbyte Level 1 (L1) instruction and data caches, and a 1 Mbyte Level 2 (L2) cache 

memory [1]. The MPC7450 implements the 32-bit portion of the PowerPC 

architecture, which provides 32-bit effective addresses, integer data types of 8, 16, 

and 32 bits, and floating-point data types of 32 and 64 bits. The CPU interfaces to 

memory and peripherals by a 64-bit wide bus using 60x protocol [2]. 

The CPU is set to operate at 800 MHz internal clock frequency in the DPU, although 

CPU type selected could be clocked up to 1420 MHz. This decision has been made in 

order to reduce power consumption and avoid thermal cooling by a fan.  

1.2 RMAP ON SPACEWIRE 

SpaceWire is a communications network for use onboard spacecraft. It is designed to 

connect sensors, memories, data processing units and a downlink telemetry subsystem 

providing an integrated onboard data-handling network.  SpaceWire links are serial, 

high-speed (2 Mbits/s to 200 Mbits/s or higher), bi-directional, full-duplex, point-to-

point data links that connect together SpaceWire equipment.  Application information 

is sent along a SpaceWire link in discrete packets.  Control and time information can 

also be sent along SpaceWire links. SpaceWire is defined in the European 

Cooperation for Space Standardization (ECSS) ECSS-E50-12C standard [3]. 

There is a number of communication protocols that can be used in conjunction with 

the SpaceWire. The Remote Memory Access protocol (RMAP) is one of these 

protocols and is specified in ECSS-E-ST-50-52C standard [4]. The aim of RMAP is to 

support reading from and writing to memory in a remote SpaceWire node. RMAP can 

be used to configure a SpaceWire network, control SpaceWire nodes, and to transfer 

data to and from SpaceWire nodes. RMAP can also be used to download and debug 

software on a remote processor.  

DPU’s RMAP SpaceWire links are implemented using the ESA SpaceWire - RMAP 

IP core developed by University of Dundee for ESA. There are two main function 

types of the RMAP IP core. The first type is referred to as the Initiator RMAP 

interface, which sends out RMAP commands and receives any replies. The second 

type is the Target RMAP Interface, which receives RMAP commands, executes them 

and sends out any required replies [5].  

1.3 DPU 

MARC demonstrator DPU is a general purpose 800 MHz high performance space 

flight (payload) computer providing 1 Dhrystone MIPS (DMIPS) / MHz performance. 

The DPU high-speed interface to external world is three SpaceWire links, two of 

which support RMAP protocol.  

The breadboard model of the DPU computer will function as a software development 

board and a demonstrator in MARC SpaceWire - RMAP network. Breadboard models 

were manufactured using mainly commercial quality grade components. Industry- and 

military-grade components may be used as well in places where commercial 
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equivalent is not suitable to represent the required function. In general all the core 

DPU components in the design has space flight equivalent counterparts.  

2 DPU ARCHITECTURE 

The system architecture of the MARC demonstrator DPU is depicted in Figure 1. The 

DPU system consists of the CPU, System Control Unit (SCU), SpaceWire Control 

Unit (SpWCU) and memory. DPU’s main external data interfaces are the three 

SpaceWire links capable to 100 Mbits/s data rate full-duplex. The main software 

debug interface is an EIA-232 Universal Asynchronous Receiver / Transmitter 

(UART), and the PowerPC COP interface is for low-level software debugger 

connection from a remote computer. DPU boot-loader and self-test software are 

controlled via UART.  
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Figure 1 Block Diagram of the DPU 

The SCU interfaces the processor with 64-bit PowerPC 60x bus to DPU memory and 

functions. The SCU controls SRAM, FLASH and EEPROM memory interfaces, and 

timer, interrupt controller, GPIO, UART and SRAM EDAC are embedded in the 

SCU. The SCU interfaces also the SpWCU and the CPU by a custom made 32-bit 

bus.  

The SpWCU controls the SDRAM memory interface, and interfaces the Unit to the 

CPU via SCU. Embedded Direct Memory Access (DMA) unit controls accesses from 

the CPU and SpaceWire / RMAP functions to the SDRAM memory. The SpWCU and 

SDRAM memory devices are placed on a separate mezzanine board from the DPU 

main board. 

The DPU memory consists of the 256 kB FLASH for boot program storage, 4 MB 

EEPROM which can be unpowered when not used, 8 MB EDAC protected SRAM 

and 512 MB EDAC protected SDRAM. All the memory is accessible by the CPU and 

can act as storage either for code or data. Data transfers between the DPU and 

external world through SpaceWire links is routed via SDRAM. 
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2.1 DMA CHANNEL FOR SPACEWIRE 

Purpose of the DMA is to transfer data packets directly between SpaceWire interfaces 

and SDRAM memory in the dedicated bus independently of the CPU. Meanwhile the 

CPU can perform other tasks using its local cache or access any other memory space 

than SDRAM as is illustrated in Figure 2. Each SpaceWire receiver and transmitter 

has it’s own DMA channel to SDRAM memory. 
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Figure 2 DMA to SDRAM memory 

In order to exploit fast data rate SDRAM burst accesses, received data is collected in 

32 bytes (4 x 64-bit) buffer before written in SDRAM, and data to be transmitted is 

read in 32 bytes buffer from SDRAM. SpaceWire data interface buffers are depicted 

in Figure 3. Theoretical data rate is 229 Mbytes/s for SpaceWire access to SDRAM. 
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Figure 3 SpaceWire data buffers for memory burst access 

2.2 DMA CHANNEL FOR RMAP  

RMAP IP core has a common 32-bit bus interface for RMAP Initiator command 

encoder, Reply decoder and Target functions [7]. In the DPU, each RMAP core has 

access to SDRAM memory by the bus interface via it’s own DMA channel, as is 

depicted in Figure 4. Memory transfer is one 32-bit word (4 bytes) per an access in 

the current version of the DPU. This leads to 29 Mbytes/s theoretical data write rate to 

SDRAM and 50 Mbytes/s data read rate for RMAP access. 
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Figure 4 RMAP Core Interface to Memory 

3 PERFORMANCE 

3.1 CPU PERFORMANCE 

CPU performance is highly dependent on whether code and data processed at the 

moment are located in the CPU cache or not. CPU can reach over 1000 MIPS 

performance during the code and data are available in the CPU cache. Cache fetches 

and flushes to memory are done via the 64-bit 60x bus, which operates at 50 MHz in 

the DPU. These operations may slow down performance considerably. On the other 

hand CPU has ability for branch prediction for more effective code fetch and SRAM 

and SDRAM interface functions effectively with burst accesses, 32 bytes are 

transferred per a burst. With PowerPC, burst accesses are performed when caches are 

enabled. In current version of the DPU, SDRAM memory is controlled by the 

SpWCU, which in turn is connected by a 32-bit, 50 MHz bus to the CPU.  

Measured DPU power consumption is 10 W in SpaceWire loop-back test, and 8.5 W 

in idle. Power consumption is dependent on overall activity, i.e. activity in the CPU, 

SCU, SpWCU, memories and external interfaces. 

3.2 SPACEWIRE PERFORMANCE 

The three DPU SpaceWire links can connect and reach up to 100 Mbits/s link speed. 

Transmit speed is limited in the DPU to 100 Mbits/s, wherein receiver adapts to 

incoming link speed. Receivers have been tested successfully at 200 Mbits/s in a 

laboratory. Continuous 100 Mbits/s in the SpaceWire link results to 10 Mbytes/s data 

rate in one direction, and 60 Mbytes/s for three concurrent links full-duplex. The DPU 

DMA interface between SpaceWire and SDRAM memory is able to handle the rate.  

Loop-back test in the laboratory measures continuous 10 Mbytes/s transfer rate 

between two active SpaceWire links and SDRAM. The CPU initiates every packet 

transmit and receive; the data rate depends on the software performance. This may 

explain the measured lower transfer rate than is expected.  

3.3 RMAP PERFORMANCE 

Every RMAP packet has a header, minimum length of 16 bytes for command and 12 

bytes for reply, plus a CRC byte for data bytes in a packet [6]. Protocol overhead may 
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be thus large when a small amount of data bytes is transferred in a packet. However, 

when an RMAP command is started, CPU needs to write a transaction record and a 

header information record in the SDRAM memory for the becoming transaction to be 

read by the RMAP core [7], in addition to actual data transferred in a link.  

RMAP loop-back test for variable size data packets (1 byte to 512 bytes) was 

arranged between two DPU boards, for which 4 Mbytes/s continuous RMAP – 

SDRAM transfer rate was measured. Initiator board generated packets and verified 

data correctness of replies. Target board simply wrote the received data in memory for 

a write command, and read data from memory and sent it in reply packet for a read 

command. It was not started a new command until the current reply was checked. 

RMAP Target latency, 7.9 s, was measured as time taken from command done to 

reply received status in the Initiator. 

4 CURRENT AND FUTURE WORK 

Tests to verify correct behaviour, data rates and reliability are performed for the DPU 

currently. Future work might include performance enhancement by integrating 

functions from the Mezzanine board in the DPU main board, which would allow Inter 

bus i.e. CPU access to SDRAM and RMAP speed up from current 200 Mbytes/s to 

400 Mbytes/s. RMAP memory access data rate could be increased by exploiting 

SDRAM burst transfer mode as is done with the SpaceWire interfaces. 
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ABSTRACT 

The GR712RC device is a first of its kind, offering the space community powerful 

multi-core processor capability in combination with multiple RMAP [6] enabled 

SpaceWire links [5]. The device is highly configurable and can operate in many 

different applications, ranging from platform control to payload processing.  

GR712RC DUAL CORE LEON3-FT 

1.1 OBJECTIVES 

The GR712RC device has been designed to provide high processing power by 

including two LEON3FT 32-bit SPARC V8 processors [7], each with its own high-

performance IEEE-754 compliant floating-point-unit and SPARC reference memory 

management unit. This high processing power is combined with a large number of 

serial interfaces, ranging from high-speed links for data transfers to low-speed control 

buses for commanding and status acquisition. The GR712RC can be utilized in 

symmetric or asymmetric multiprocessing mode. The processors provide hardware 

support for cache coherency, processor enumeration and interrupt steering.  

1.2 FEATURES 

The main functions of the GR712RC device are: 

 2 x LEON3FT 32-bit SPARC V8 Processor with  

◦ IEEE-754 High-performance Floating Point Unit (FPU) 

◦ SPARC V8 Reference Memory Management Unit (MMU) 

◦ 4x4kByte Instruction Cache, 4x4kByte Data Cache 

◦ Branch prediction 

 Debug Support Unit with JTAG Debug Interface 

 6 x SpaceWire links, of which two with RMAP 

 10/100 Mbit/s Ethernet MAC 

 Redundant Mil-Std-1553B BC/RT/MT (A/B) 

 2 x CAN 2.0B 

 I2C and SPI interfaces 

 8 x Timers, 6 x UARTs, Interrupt Controller, General Purpose Input/Output 

 CCSDS/ECSS Telemetry and Telecommand [1][2][3][4] 

 192 kByte On-chip SRAM with ECC 

 Memory controller for SRAM/PROM/SDRAM/IO with BCH and RS protection 
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The variation in interfaces allows different systems to be implemented using the same 

device type, which simplifies parts qualification and procurement. It also brings cost 

reductions to software development since the core functionality can be reused from 

application to application, only changing the drivers for the interfaces. Due to the high 

amount of peripherals and a limited number of pins there is an I/O switch matrix that 

controls which peripheral is connected to each pin.  

Figure: GR712RC block digram 

The clock gating unit can turn off the clock for each major peripheral thus lowering 

power consumption considerably. The processor clock is automatically turned off 

when a processor is in power down mode. The FPU is clock gated when floating point 

operation is disabled or when the corresponding processor is powered down. 

1.3 PERFORMANCE 

The expected performance of the GR712RC device at 100 MHz system clock 

frequency is approximately 250 Dhrystone MIPS. The expected speed of the 

SpaceWire links is above 200 MBPS. 

1.4 TECHNOLOGY 

The GR712RC is fabricated at Tower Semiconductors Ltd., using standard 0.18 μm 

CMOS technology. It employs Rad-Hard-By-Design methods from Aeroflex Gaisler 

and Ramon Chips. As a preparation for this development, a first ASIC silicon 

prototype, the GR702RC, with integrated processor and SpaceWire interfaces has 

been successfully manufactured, validated and undergone radiation testing. The final 

GR712RC device is expected to be latch-up free, be fully protected against single 

event upsets in registers and memory, and tolerate a high total ionizing dose.  

To allow flexibility and possibility for fault-containment, the Low-Voltage 

Differential Signaling (LVDS) buffers required for the SpaceWire interfaces need be 

implemented off-chip using standard components. 

1.5 PACKAGING AND AVAILABILITY 

 

GR712RC will be packaged in a 240-pin Ceramic Quad Flat Package (CQFP) 

meeting high pin count, low die size, manufacturability and testability requirements. 

SpaceWire Components

154



 

The GR712RC will be available as engineering samples in August 2010. Space 

qualified parts will be available in first half of 2011. Prototyping and evaluation is 

possible using the GR712RC development board. 

GR712RC DEVELOPMENT BOARD 

In order to provide a platform for customers to begin developments using the 

GR712RC device, Aeroflex Gaisler provides a GR712RC development board. The 

board comprises a custom designed PCB in Compact PCI 6U format which can be 

used either stand alone or inserted into a CPCI rack. 

The board has interfaces for all peripherals and 8 MByte of SRAM (with check-bits), 

8 MByte of Flash PROM, and a standard SDRAM SODIMM socket. Each pin in the 

I/O switch matrix is configured with a jumper. All the interfaces are conveniently 

located on the front side of the board, allowing easy access to a CPCI front-panel. 

Figure: GR712RC development board 

MULTIPROCESSOR NETWORKS OVER SPACEWIRE 

 

The multiple SpaceWire links allow the GR712RC device to be used in 

multiprocessor applications, providing two high-performance processors in each node. 

 

The onboard payload reference network is a marriage between the high-speed 

backbone SpaceWire network and the low-speed spacecraft control bus based on 

CAN or Mil-Std-1553B. The SpaceWire network is well suited for bulk data transfers, 

whereas the CAN or Mil-Std-1553B bus is suited for control and sensor acquisition 

tasks. The need to bridge the networks can be seen from several perspectives. 

 

The GR712RC can be integrated in the Instrument Controller Unit (ICU) which acts 

as the payload data processor and mainly receives payload data from instruments and 

produces processed data to be downlinked. The main data communication is 

performed via the SpaceWire network. The ICU is however controlled and monitored 

via the CAN or Mil-Std-1553 bus from the On-Board Computer (OBC). The 

GR712RC then acts as a remote terminal which is being managed by the OBC. 
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Alternatively, the GR712RC can be integrated in the OBC. Since the OBC acts as the 

network manager on the CAN network, the CAN controller must carter capability 

such as node management and time distribution. The same approach applies to the 

Mil-Std-1553B bus. The OBC also communicates or manages the SpaceWire network 

via SpaceWire links. 

 

As can be seen from the two above application scenarios, the capabilities of the 

GR712RC is not limited only to support the CAN/Mil-Std-1553B buses in an ICU, 

but will also allow its usage in the OBC. This will reduce development costs since the 

same device is used in both payload and avionics. This will also promote the usage of 

hybrid SpaceWire and CAN/Mil-Std-1553B networks. To support both applications, 

the GR712RC facilitate sufficient processing power as well as suitable interfaces. 

 

To bring the concept a step even further, one could envisaged applications in which 

the GR712RC actually replaces the signal processor in an ICU or instrument. The 

processing capacity of the GR712RC then needs to be at least as great as can be 

expected for current monolithic signal processor devices. Such a concept would 

provide great savings in terms of power and board area, since a single device with 

some external memory would be sufficient to form the signal processing core. 

 

The ultimate step would be to use the GR712RC processing capacity and number of 

SpaceWire links to take on the same role as the Transputer [9] used to have. This  

requires that the on-chip processor provides adequate floating point capacity. At the 

same time, the architecture is be scalable and allows operation under low power 

conditions by means of reducing the clock frequency and the use of few external 

memory devices. It is not clear if there will be a follow on for the current European 

digital signal processor, as 32-bit DSP manufacturers are not numerous and are in 

general not interested in licensing their technology for a niche sector like space. The 

GR712RC can fill this gap since being sufficiently performant. 

 

Examples of how the GR712RC device can be used to build a fault-tolerant 

SpaceWire computer is discussed in [8]. 

CONCLUSIONS 

The GR712RC device brings multi-processing to avionics and payload applications, 

increasing the processing performance compared to existing solutions, without 

consuming board real estate or demanding complex memory implementations. 

The GR712RC development board has been designed to support initially stand alone 

operation, but also to fit into future architectures where inter-board communication is 

realized through active or passive SpaceWire backplanes. 
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ABSTRACT 

This paper describes development of two types of high performance fibre optic 

transmitter-receiver modules with optical fibre cables for SpaceFibre data links. Both 

solutions use mainly the same electrical and optoelectronic components but they have 

different mechanical designs. On type 1 transceiver electronics uses low temperature 

co-fired ceramic substrates (LTCC) and the module is hermetically sealed in Kovar 

housing. On type 2 an integrated ceramic package with fibre hermetic feed through 

has been developed in conjunction with a high performance optical sub assembly. On 

both types the transmitter is based on a 850nm GaAs Vertical Cavity Surface Emitting 

Lasers (VCSEL) and receiver part on a GaAs PIN photodiode. 

1 INTRODUCTION 

Emerging data rates on telecom satellites will require high through-put solutions for 

data transmission between e.g. antennas and data handling units. SpaceFibre is a 

proposed very high speed serial data link technology intended to complement the 

existing SpaceWire high-speed data link standard. This technique is based on opto-

electronic transmitter and receiver modules with optical cables and connectors. Thus, 

two electronic units can be connected to each other with a high speed optical link. 
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Electrical 
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Electrical 
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Optical Fibre 
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Fig. 1. Optical Link principle. 
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In the presented work we have developed two types of opto-electronic modules. VTT 

and D-Lightsys have both designed 10 Gbps optical transceivers suitable for the 

SpaceWire Protocol. For interoperability reasons, common mechanical dimensions, 

electrical pin layout and optical connector types were specified for the modules. The 

modules have max. outer dimensions of 17 x 17 x 5 mm
3
 and is a 48-pin QFN type 

with 1mm pitch. A radiation resistant 50/125-µm 0.23NA graded-index fibre was 

selected for the transceiver pigtails. The outer diameter of the cabled pigtail is 1.2 mm 

and it is compatible with the Diamond Mini-AVIM, Diamond standard AVIM and 

Radiall LuxCis connectors. 

2 MODULE DESIGNS 

2.1 VTT’S TRANSCEIVERS 

VTT employs low-temperature co-fired ceramic (LTCC) technology for the 

transceiver module electronics. Low conductor resistance and dielectric loss, 

multilayer structures with fine-line capability and compatibility with hermetic sealing 

make LTCC a useful technology for high-speed data communications. In addition, the 

good match of the thermal expansion coefficient to optoelectronic chips reduces 

packaging-induced thermomechanical stresses. 

We decided to use 850-nm vertical cavity surface emitting lasers (VCSEL) as the light 

emitters. They offer low drive current and small power consumption. GaAs PIN 

diodes were chosen for the photodetectors. VCSELs and PIN diodes are bare dies 

compatible with flip-chip bonding. 

Transceiver electronics is based on commercial 10 Gbps components and it consists 

of three boards: the mother board, transmitter optical subassembly (TOSA) and 

receiver optical subassembly (ROSA). The mother board contains the laser driver and 

interconnections between the subassemblies and current mode logic data 

inputs/outputs. TOSA contains the VCSEL and few passive components, and ROSA 

consists of the photo diode, receiver amplifier and few passives. The transceiver uses 

a single 3.3-V power supply and has a typical power consumption of 230 mW. 

The maximum average transmitted optical power is limited to 0.67 dBm because of 

the eye safety limitations. The nominal sensitivity of the receiver at the photo detector 

is 18 dBm for 10
-12

 BER at 10 Gbps. Transceiver modules are hermetically sealed. 

This is realised with a metal lid and a Kovar frame soldered to the mother board, Fig. 

2. The hermetic fibre feed-through is made using a low temperature glass preform. 

The transceiver module has dimensions of 17  17  5 mm
3
 and a mass excluding the 

fibre pigtails of 4 grams. The pigtail cable weights 2.5 grams/meter. 

 

Fig. 2. VTT’s SpaceFibre transceiver with LuxCis connectors before lid sealing. 
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2.2 D-LIGHTSYS’S TRANSCEIVERS 

The module designed by D-Lightsys is realised with a HTCC ceramic substrate with a 

KOVAR wall and a low temperature glass feedthrough. 

  

FIG. 3 - HERMETIC CERAMIC PACKAGE (FRONT AND BOTTOM VIEW)REFERENCES 

D-Lightsys develop a unique Planar Optical Sub-Assembly (OSA) technology based 

on silicon micro machining. This silicon bench is used to precisely align the fibres 

(with +/-5µm accuracy) in front of the laser source and the photo detector chip to 

guarantee a coupling efficiency better than 80 to 90%. 

The Optical Sub Assembly, is less than 2mm thick and have dimension of 6x6mm, 

allowing the integration of several laser source and detector manufacturers. The OSA 

is also responsible for the heat transfer within the package to allow the module to 

operate in the [-40;+85°C] temperature range. 

 

FIG. 4 – OPTICAL SUB-ASSEMBLY AND HIGH SPEED ELECTRONICS OVERVIEW 

Laser driver and photodiode transimpedance/limiter amplifiers are hybridized within 

the hermetically sealed package with a controller to realize a protocol independent; 

temperature compensated high performance optical transceiver. 

The module is designed to operate up to 10Gbps, with a 12dB link budget over the 

temperature range. D-Lightsys controller algorithm monitor in real-time the module 

status and temperature and compensate the laser modulation and biasing current 

accordingly. Less than 1dB of average optical power and less than 2dB of extinction 

ratio variation over temperature could be achieved. 

3 PRELIMINARY TEST RESULTS 

3.1 VTT’S  MODULE : PRELIMINARY TEST RESULTS 
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Only the hermeticity test was performed for VTT modules at the time of issuing this 

paper. The results were positive and other test results were expected to be available 

soon after. 

3.2 D-LIGHTSYS’S MODULE : PRELIMINARY TEST RESULTS 

The following graph plots the evolution of the transceiver performances over the 

temperature range for bit rate of operation of 7Gbps. 

 

  FIG. 5 – PRELIMINARY TEST RESULTS AND OPTICAL EYE DIAGRAM AT 90°C 

A link budget better than 12dB could be achieved over the temperature range. The 

receiver sensitivity is slightly impacted with the temperature due to the test board 

substrate limitations (losses, reflexions, etc...). We provide hereafter the eye diagrams 

done a 90°C for the transmitter (optical eye) and -10°C for the receiver (Electrical 

Eye). 

 

  FIG. 6 – ELECTRICAL AND  OPTICAL EYE DIAGRAM AT 7GBPS 

3.3 RADIATION TESTS FOR COMPONENTS OF BOTH DESIGNS 

Heavy Ion, protons and Gamma radiation tests have been performed within the scope 

of the project. Modules show good behaviour with a total Gamma dose of 100kRad 

and with proton radiation up to 1E12 protons/cm at a rate of 2E8 protons/cm2/s. 

At Heavy Ions test up to LET threshold of 70 MeV/mg/cm2 only the VCSEL driver 

circuit showed to be latch up sensitive. Means to overcome this problem are being 

studied with the support of the components manufacturer. 

4 CONCLUSION 

Test results available so far are promising but more detailed testing will be required 

full characterisation of the developed optoelectronic modules. 
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ABSTRACT 

SpaceWire Backplane is a backplane architecture with SpaceWire interconnects 

between each board. In ISC2008, we proposed that the space qualified, non-high 

speed backplane connector evaluated and, if the signal assignment is carefully 

designed, can be used for high-speed data transmission.[1]. On the basis of this result, 

we developed the SpaceWire backplane prototype with SpaceWire and SpaceFibre 

links. This backplane prototype includes a passive backplane board with SpaceFibre 

links of 3 Gbps or higher. We also developed a sample daughter board for functional 

evaluation that has both SpaceWire and SpaceFibre interfaces. We present the design 

and implementation of the SpaceWire backplane as well as an evaluation of the high-

speed signal quality of the backplane and daughter board prototyping result that 

includes the SpaceFibre interface implemented. 

1 BACKPLANE TOPOLOGY AND SIGNAL ASSIGNMENT 

In the backplane interconnection system, high-speed signals are connected between 

daughter boards via connecters and a backplane. This reduces the number of harnesses 

needed and improves the integrity of the signal. SpaceWire backplane is a backplane 

architecture that uses SpaceWire as an interconnect between boards. While SpaceWire 

is point-to-point link connection, backplane topology and/or router functionality is 

important. We decided our backplane is passive without any active components like 

routes because the backplane needs to be reliable and durable. Although there are 
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various network topologies such as tree, ring and mesh. we selected a backplane 

configuration as the full mesh topology for the followings reasons. 

1. The backplane has to have enough flexibility. While other topologies are a subset 

of the full mesh topology, the actual configuration can be defined by each satellite 

and/or purpose of each component. 

2. Usually full mesh topology needs too many interfaces to construct a network 

system. However, almost all components of a spacecraft can be constructed with no 

more than 8 boards. Therefore backplane needs to have only 7 SpaceWire ports. 

3. Full mesh topology can be partitioned in any subset. This nature is useful to make a 

component redundant. We defined two partitions of 4 slots to our backplane and 

defined the power supply board connector and control signals to each partition. If full 

of 8 slots required for 1 component, redundancy can be provided by using 2 chassies 

connected to each other via external SpaceWire signals. 

4. Daughter boards can be independent of slot position if SpaceWire ports are 

assigned in cyclic symmetrically. The daughter board thus needs to implement only 

the required SpaceWire ports. For example, for a backplane partitioned in two 4 slots, 

each daughter board need only the first three SpaceWire ports. 

SpaceWire

Power Supply

SLOT0 SLOT7SLOT6SLOT1 SLOT5SLOT2 SLOT4SLOT3

Control/Status
Clock, Reset, etc

SpaceFibre

DC/DC-A DC/DC-B

 

Figure 1 : SpaceWire Backplane topology 

On the contrary, we defined Tree topology for SpaceFibre channels because fewer 

SpaceFibre channels can be assigned to one connector with high-speed signal quality. 

We suppose the purpose of SpaceFibre channel is for high speed/large capacity data 

recorder and/or high-speed signal processing boards, so the tree topology is suitable 

for this purpose. The backplane topology we defined is shown in Figure 1.  

The definition of control/status signals is also important as it defines the topology of 

the SpaceWire topology. We defined clock, timing pulse distribution, power 

control/status, slot ID and reset signals. We also defined slot0 and slot7 as control 

master slot of other slots. The control master slot controls power on and off via power 

control/status signals.  
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We also defined mechanical design including chases and daughter board. As the 

mechanical design is based on our existing components, using this prototype to 

develop the flight model is rather easy. The daughter board is designed with upper 

compatibility to a 6U Euro card. The circuits designed for this card are easily 

implemented onto the daughter board because the circuit-populated area excluding 

frame structure is same as that of the 6U Euro card.  The prototype specification is 

shown in Table 1.  

Number of slots 8 + 2(DC/DC)

Number of channel SpaceWire : 7ch for each slot

SpaceFibre : 3ch for slot0 and slot7,  1ch for other slots

Topology Full mesh(SpaceWire), Tree(SpaceFibre)

Dimensions Chassis : 290 mm x 253 mm x 264 mm

Daughter board : 265 mm x 223 mm

Backplane connector 110 pins x 2 / slots

 Table 1 : Prototype backplane and chassis specifications 

We developed and evaluated SpaceWire backplane prototype. While we presented 

3Gbps signal integrity in ISC2008[1], we designed this prototype to transmit signals 

up to 6.25Gbps because SpaceFibre maximum transfer rate target is 6Gbps. To 

achieve this high-speed signal capability, we also designed an equalizer for high-

speed signal lines. The daughter board with the SpaceWire and SpaceFibre interfaces 

is also developed to validate functionality of the backplane system. In addition to the 

SpaceWire codec we have already developed[2], SpaceFibre codec is developed to 

this daughter board. A block diagram of the daughter board we developed is Figure 2. 

In addition to backplane connector signals, two SpaceWire and two SpaceFibre 

connectors are assigned in front. All SpaceWire and SpaceFibre codec channels, and a 

small processor for debug and port control and switch fabric are integrated into FPGA. 

The first implementation of SpaceFibre codec works in loopback mode. We are 

planning an interoperability test with other SpaceFibre implementations to validate 

and improve the SpaceFibre specification. 

JTAG

FPGA

RS232C SERDES

SERDES

LVDS

LVDS

SpFi
3ch

SpW
7ch

SpFi
2ch

SpW
2ch

Control and Monitor lines

Clock, Timing Pulse

Processor

Configuration ROM

Router

To Backplane 
ConnectorsTo Front 

Panel

 

Figure 2 : Daughter board block diagram 

The backplane board, the daughter board and the chassis we developed are shown in 

Figure 3 and the measurement of transmission characteristics and eye pattern of 

6.25Gbps backplane signal are shown in Figure 4. Our equalizer significantly 
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improves both transmission characteristics and eye pattern. This result shows our 

backplane design transmits data at 6.25 Gbps. 

 

Figure 3 : SpaceWire backplane (left), daughter board (center), and chassis (right) 

Jitter  p-p = 40 ps Jitter p-p = 16 ps
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Figure 4 : Evaluation of high-speed signal transmission 

2 CONCLUSION 

We defined SpaceWire backplane architecture including network topology, signal 

assignment, and mechanical design. We then developed the prototype of backplane 

and daughter board with a chassis to evaluate our backplane system. The evaluation 

result of the backplane signal integrity is enough to transmit a 6 Gbps high-speed 

signal via a space-qualified connector. We also implemented SpaceFibre codec for 

our daughter board. The first implementation works with a loopback test and we are 

planning to test interoperability with other implementations. 
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ABSTRACT 

With limited resources available to acquire FPGA chips, a design method was developed based on 

the redundancy backup of the various functional sub-modules in SpaceWire node. The aims to find 

the optimization design of redundancy backup in an FPGA chip. This design method can improve 

the reliability of the whole system. 

First, according to a failure rate of λ, the reliability of the control, transmitter, receiver, recovery, 

faulting, timing, reliability, and baud rate selection modules of the whole system was calculated, 

attaining a total of 0.8675. Second, to meet the reliability requirement of the whole system of the 

space-solar telescope for SpaceWire (0.95 after working in the 750 km sun-synchronous-orbit for 

three years), the reliability targets meeting the requirements of every module mentioned above were 

calculated and attained according to grading distribution. Finally, using the optimal solution based 

on linear programming in the theory which addressed the "optimal allocation of spare parts" 

problem, the optimization design of the redundancy backup of the various functional sub-modules 

was obtained. The simulation results proved the validity of this design, indicating that a new 

method in improving the reliability of the redundancy backup in the SpaceWire system has been 

developed. 

1 INTRODUCTION 

In meeting modern product quality requirements, reliability is of prominent importance. Backup 

program design and optimization is a basic work in reliability engineering. The SpaceWire designed 

should reach the target such that the reliability of the whole SpaceWire system is 0.95 after working 

in a 750 km sun-synchronous-orbit for three years. The initial design in FPGA has achieved a 

reliability of 0.8674, which is far from what was expected. However, in order to realize the 

SpaceWire node in an FPGA chip and perform scientific backup, high reliability requirements must 

be met, and the limited resources on the FPGA chip must be maximized. Therefore, a design is 

proposed which perform each functional sub-module within an FPGA-based Spacewire node 

redundancy backup, thereby enhancing the reliability of the entire system to meet task demands. 
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2 ALGORITHM OF THE BACKUP 

2.1 RELIABILITY CALCULATION OF THE SUB-MODULE 

With the development of EDA technology, the use of hardware description language design has 

become a trend. The SpaceWire node is achieved on a Xilinx's Spartan-3E (XC3S250E) FPGA, and 

the sub-module-level backup of the system is completed at the same time. To obtain the reliability 

of a sub-module before backup, the following are assumed: Ⅰ. A blank FPGA’s reliability is 1. Ⅱ. 

The probability of Single Event Upset, electromagnetic interference, and other incidents is equal 

within the duration of three years. Ⅲ.The probability of damage in the working CLB of FPGA is 

the same. Ⅳ. The reliability of CLB which does not work is 1, and CLB is not damaged. 

Let Ri be the reliability of the sub-module; let i=1,2,…,8. Let APi be the occupied area ratio for each 

sub-module; let i=1,2,…,8. If the occupied area ratio of the sub-module is small, then the effect is 

lesser, and the normal working hour is long. For the opposite condition, the effect is greater, and the 

normal working hour is short. The FPGA we used, whose CLB distribution is shown in Table 1. 

The number of CLBs occupied by each sub-module in the SpaceWire node is shown in Table 2. Let 

Ai be a factor of influence of the area, for i=1,2,…,8. Then the formula is 

Ai=
1

AP i
                                                                                      (1) 

Let t0 express the normal working hour, then the Mean Time to Failure is 

MTTFi =Ai × t0                                                                        (2) 

The system failure rate for each sub-module is 

 MTTFi =  e−λtdt = 1/λ
∞

0
                                                      (3) 

Thus, the obtained formula for calculating the reliability of each sub-module is 

Ri t = e−λ i t0                                                                            (4) 

Based on above Formulas (1), (2), (3), and (4), the reliability of the 8 sub-modules calculated is 

shown in Table 2. Then according to the series system reliability formula, the entire system 

reliability achieved is R = 0.8674. 

Table 1: Spartan-3E FPGA Data Sheet
[1] 

IC 
CLB 

Row Arrange Total 

XC3S250E 34 26 612 

 

 

 

 

Table 2: The reliability of each sub-module 

Sub-module CLBs Reliability 

control module 12 0.9806 

sending module 20 0.9678 

receiver module 32 0.9491 

recovery  12 0.9806 

faulting module 2 0.9967 

timing module 5 0.9919 

credibility  2 0.9967 

baud rate 

selection 

2 0.9967 

2.2 RATING DISTRIBUTION METHOD 

The rating distribution method
[2]

 is determined by peer experts based on the complexity, 

importance, and degree of difficulty to achieve the technology, among others. Evaluation is then 

made based on these factors, which not only reflects the characteristics of the whole system but also 

underlines the recommendations from the long-term accumulated experience of experts in 

technology. Finally, an effective backup program is given. The rate of each sub-module is given by 
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experts according to the effect of the reliability of the system or the basic reliability of several key 

factors. Let K be the derived weighting factors for each sub-module, then the reliability is 

distributed.  

Weighting the product depends on a variety of factors, including the characteristics of FPGA, as 

well as complexity, importance, hours of work, and technological factors. Such factors can be 

further divided into several levels. Generally, score is divided into five levels—perfect, very good, 
quite good, good, and general. According to the characteristics of the SpaceWire node, the experts 

present the results of the specific rates in Table 3. 

Calculation of the reliability index for each sub-module: 

Ⅰ. The weighing factors of the sub-module are 

Ki =
Ci

Cs
                                                                           (5) 

Ⅱ. The rating of sub-module is 

Ci =  mij
p
j=1                                                                  (6) 

Ⅲ.The rating of the system is 

Cs =  Ci
n
i=1                                                                    (7) 

Ⅳ. The sub-module reliability index is 

λi = Kiλs                                                                        (8) 

If the reliability index is Rs=0.95, then the system failure rate is λs=5.4217E-10 is calculated 

according to the formula (Rs = e−λs t).  The reliability distribution is completed depending on the 

formula (Ri = e−λ i t). The scores given by several experts in related fields are averaged, obtaining 

the result of each module by the formula (5), (6), and (7), as presented in Table 3. At the same time, 

the calculating of the specific circumstances of the reliability distribution through Formula (8) is 

also shown in Table 3. 

Table 3: Index of each sub-module 

Weighing 

factor 

Compl

exity 

Import

ance 

working 

time 

Technol

ogy 

Rating of 

sub-module 

Weighing 

factor 

Failure rate Reliability 

control  3 2 2 5 60 0.0866 0.4694E-10 0.9956 
sending  5 1 4 5 100 0.1443 0.7823E-10 0.9926 

receiver  5 1 4 5 100 0.1443 0.7823E-10 0.9926 

recovery  3 2 4 5 120 0.1732 0.9388E-10 0.9912 

faulting  1 5 3 5 60 0.0866 0.4694E-10 0.9956 

timing  1 5 5 4 125 0.1804 0.9779E-10 0.9908 

credibility  1 4 4 5 80 0.1154 0.6259E-10 0.9941 

baud rate 

selection 
1 4 3 4 48 0.0693 0.3755E-10 0.9965 

The Whole System 693 1 5.4217e-10 0.95 

2.3 THE LINEAR PROGRAMMING METHOD 

From Section 2.2, we learned that the rating distribution method
 
is an effective backup plan, as 

pointed by the long-term technical background of experts. However, this method shares certain 

deficiencies like the subjective factor of experts, fuzzy weighted assignment and so on. The linear 

programming approach
[3]

 is adopted. The relatively superior backup program can be discovered 

using the main factor for searching the most superior result. The scientific nature and validity of the 

allocation of the backup part are analytic, representing the complexity parameter aspect. 
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Let the system be composed of n inter-independent sub-modules. Every sub-module is realized by 

the same configurable logic block; let j=1，2，…，n, 

Cj  -- the area of sub-module j. 

Kj  -- the number of sub-module j. 

Rj(Kj)--when the number of the j sub-module is Kj, the reliability of the sub-system j. 

Obviously, the reliability of the system is as follows: 

R(k)=R(K1，…，Kn)= Rj(Kj)
n
j=1                                                (9) 

Let the system be composed of n inter-independent sub-modules. If the sub-module j is composed 

of Kj inter-independent modules j by parallel, let Pj,for j = 1,2, … , n be the reliability of modules j , 

and the reliability of the modules j by parallel is as follows: 

Rj Kj = 1 − (1 − Pj)
K j                                                                    (10) 

Here, the reliability of the system is as follows: 

R(k) = Rj(Kj)
n
j=1 = [1 −  1 − Pj 

K j
]n

j=1                                  (11) 

Then the value of K1，…，Kn  must meet the following equation set: 

 Rj(Kj)
n
j=1 ≥ R0                                                                              (12) 

Kj = 1,2, …，j = 1,2, … n                                                               (13) 

 CjKj = min(aire)n
j=1                                                                     (14) 

 CjKj ≤ 612n
j=1                                                                                 (15) 

Since the reliability of the system must meet the requirement, Rs = 0.95, the total number of parts 

of the system is considered least. 

According to series systems by n-parts, equality is seen in the following: R(1,1,…,1)=p1p2 … pn。
The same module is added to some sub-modules every time, until the reliability of the system is 

increased most quickly up to or exceeding Rs . Obviously, when the same module is added to the 

module in a parallel system in a situation where the reliability is
 
p1，p2， …，pn  is smallest. 

According to the formula (12), (13), (14), and (15), the searching algorithm is as follows: 

 

Algorithm 3.1 Using linear programming method to find the optimal solution.  (MATLAB) 
01: Input (Ri, Rs, Rp) 

02: R=prod(Ri) 

03: Te=Ri 

04: while  R<Rs 

05:  [T,j]=min(Te) 

06:  Te(j)=1-(1-Ri(j)).^(Rp(j)+1) 

07:  Rp(j)=Rp(j)+1 

08:  R=prod(Te) 

09: end while 

10: Ri=Te 

11: Output (R，Ri，Rp) 

Ri--The reliability of each sub-module.                        𝐑𝐬----The target reliability of system.  

Rp--The initial number of each sub-module.               R-- System final reliability 
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3 EXPERIMENTAL RESULTS 

Tables 4 show the backup programs obtained by the rating distribution method and the linear 

programming optimization. 

Table 4: The optimizing backup program 

Sub-

module 

Reliability 

(Initial) 

Program 1 Program 2 Program 3 

program backup program backup program backup 

control 0.9806 2 0.9996 2 0.9996 1 0.9806 

sending 0.9678 2 0.9990 2 0.9990 2 0.9990 

receiver 0.9491 2 0.9974 2 0.9974 2 0.9974 

recovery 0.9806 2 0.9996 1 0.9806 2 0.9996 

faulting 0.9967 1 0.9967 1 0.9967 1 0.9967 

timing 0.9919 1 0.9919 1 0.9919 1 0.9919 

credibility 

e 

0.9967 1 0.9967 1 0.9967 1 0.9967 

baud rate 

selection 

0.9967 1 0.9967 1 0.9967 1 0.9967 

System 0.8674  0.9778  0.9592  0.9592 

Note: The number of occupied CLBs is 163 in program 1; The number of occupied CLBs is 151 in program 2 and 3 

Tables 4 show the results. The rating distribution method can be given an effective backup program 

of the SpaceWire node, which includes the backup control, sending, receiver, and recovery module. 

The two integrated programs given by the linear programming method also arrive at the same 

conclusion. The kinds of backup solution used can make the overall system reliability reach 0.9778. 

The number of occupied CLBs is 163. Obviously, when the reliability meets the requirements, the 

on-chip resources of FPGA are saved as compared to the backup overall SpaceWire node. 

Therefore, the goal of optimized redundant backup is realized by this method. 

4  CONCLUSION 

In this paper, we develop an effective program of SpaceWire node backup, which is calculated by 

the rating distribution method. This program is also achieved by the classical mathematical theory 

named the linear programming method. This analytic method represents the scientific rating 

distribution method on the complexity factor. In short, in order to combine the two methods, the 

reliability requirements of the backup design must first be optimized. Therefore, the design and 

optimization algorithm we provide plays an important role, which has practical significance in 

redundancy backup research. 

The next step focuses on using classical mathematical theory to represent other rating factors of the 

rating distribution method analytically, as well as scientific and reasonable for factors such as the 

importance scale, working time, technical, etc. Thus, in theory, the rating distribution method is 

improved. 
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ABSTRACT 
Data-Strobe encoding is a simple encoding system. A clock signal is simply recovered 
by the exclusive OR of Data and Strobe. However, this simple decoder causes race 
condition. When Data line changes the logic level, the recovered clock also changes 
the logic level. Therefore, the recovered clock and the Data are in race condition. 
Race condition obstructs portability of the decoder logic in FPGA. 

We have developed the DS decoder to avoid race condition, which works up to the 
maximum speed of FPGAs. The race condition free decoder is portable to any FPGAs. 

1 INTRODUCTION 
Data-Strobe encoding is easy to 
be decoded with small amount of 
logic in a FPGA. Recovered 
clock by the exclusive OR of 
Data signal and Strobe signal can 
be used for decoder logic (Figure 
1). However, this simple way 
causes race condition. Data 
signal and recovered clock may 
change at the same moment 
(Figure 2). Therefore, the 
recovered clock and the Data 
signal are in race condition. The 
behaviour of this simple logic 
depends on propagation delay 
and set-up/hold time of the 
FPGA. They depend on the 

QdataD

S

Figure 1: DS decoder logic 

 

Figure 2: Wave form of Data signal and 
recovered clock. 

D (Data)

Recovered
Clock
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routing in the FPGA chip. Thus, race condition obstructs portability of the decoder 
logic in FPGA. It should be noted that race condition stay also in slower bit rate. 

Simple solution to avoid race condition is to synchronize the input signals. It is safe 
and simple way. However, the sampling interval must be shorter than the bit duration. 
Therefore, this kind of decoder cannot extract maximum performance of the FPGA 
compare to the simple decoder logic which uses the recovered clock. In this paper, we 
present new idea to avoid race condition, which works up to the maximum 
performance of FPGAs.  

2 STATE DIAGRAM OF INPUT SIGNALS 
We examine the behaviour of D (Data) and S (Strobe) in DS encoding. The figure 3 is 
a state diagram of D and S. There are no transitions between orthogonal states, which 
are caused by simultaneous change in both D and S. In DS encoding, simultaneous 
change of D and S does not happen.  

The figure 4 also shows the state diagram but lower two states are twisted. States are 
classified by “parity” of “DS”. DS odd state is DS=”10” or DS=”01”. DS even state is 
DS=”11” or DS=”00”. In other words, exclusive OR of D and S is “1” in DS odd 
states and “0” in DS even states. DS 
odd states and DS even states appear 
alternatively (Figure 5). 

The appearance rate of even/odd states 
is half of the bit rate. DS even state 
starts at the falling edge of the 
recovered clock. DS odd state starts at 
the rising edge of the recovered clock. 
Therefore it is possible to extend those 
states until the next occurrence, which 
is at the two bit after. 

3 RACE CONDITION FREE LOGIC 

 

Figure 5: Wave form of DS even state 
and odd states 
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Clock

DS odd

DS even

Figure 3: State diagram of Data (D) and 
Strobe (S). 
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Figure 4: State diagram of D-S signals. 
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Dividing the input states into two groups (even and odd), the frequency of the state in 
each group is a half of the bit rate (Figure 6). Extended even state changes the state at 
the falling edge of the 
recovered clock but does not 
change the state at the rising 
edge. Therefore, extended 
even state and the rising edge 
of the recovered clock are not 
at race condition. Extended 
odd state changes the state at 
the rising edge of the 
recovered clock but does not 
change the state at the falling 
edge. Therefore, extended odd 
state and the falling edge of the 
recovered clock are not at race 
condition.  

We split the state in to two groups, 
which are DS even states and DS odd 
states. The state is extended using 
asynchronous set / reset (Figure 7). 
The even/odd state is held for two bit 
duration.  

 Race condition free decoder logic is 
shown in the figure 8.  Since the 
extended even/odd states are held for 
the duration of two bits, the logic of this stage works at higher bit rate compare to the 
simple decoder logic. However, merging even states and odd states to obtain the 
“character”, only one bit duration is allowed. Consequently, maximum bit rate is the 
same as the simple decoder logic but not less. 

4 SUMMARY 
Because of race condition, the simple 
DS decoder logic is not portable. In 
order to avoid race condition, input 
states are divided into two groups 
using DS parity. Even parity state and 
odd parity state appear alternatively. 
They can be handled without race 
condition. This race condition free 
decoder logic works at maximum 
speed of implemented FPGA. 

 

Figure 6: State diagram of D-S signals. 
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ABSTRACT 

In this paper we present the design, development and testing of a SpaceWire codec 

that is fully compliant with ESA standard ECSS-E-ST-50-12C. This codec is part of 

the high bandwidth communication infrastructure employed in the Spanish INTA 

Microsat satellites programme. Four FPGAs families have been used to validate our 

design. Three of these implementations have been tested against commercial solutions 

using a suite of utilities developed within our group. With these utilities, the user is 

able to configure the hardware, transfer data and check the status of the SpaceWire 

links. The results of all tests are presented, including real performance results and 

compatibility test results. 

1 INTRODUCTION 

The Space Research Group of the Universidad de Alcalá has developed a SpaceWire 

IP Codec that allows a high bandwidth data exchange through a SpaceWire link. The 

initial motivation for the development of this IP Codec was to satisfy the data 

communications requirements for the Energetic Particle Detector (EPD) onboard 

Solar Orbiter [1]. It is also planned to use it within the MicroSAT satellites 

programme, which belongs to the Spanish Instituto Nacional de Técnica Aeroespacial 

(INTA) [2]. 

In the process, the Codec has been developed for four FPGA families, namely 

Spartan3E and Virtex4 from Xilinx and ProASIC3E and Axcelerator from Actel.  

Several tests have been carried out for most of these families, including compatibility 

with existing commercial solutions from Star Dundee and Gaisler Research, data 

transfer rate and data integrity tests. 

                                                 
1
 This work has been supported by the MICINN grant AYA2009-13478-C02-02. 
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In this paper, the results of all tests made are available, as well as occupation 

information for the SpaceWire Codec developed by our group compared to similar 

products developed by others. 

2 TESTING ENVIRONMENT 

To carry out the aforementioned tests, our SpaceWire Codec was tested against three 

commercial solutions: Star Dundee’s SpaceWire PCI-2, Star Dundee’s USB Brick and 

Gaisler Research’s RTC Development Suite. 

For controlling both of Star Dundee’s 

solutions, a Microsoft Windows 

diagnostic application was developed 

by our group. It allows the user to 

configure the hardware, send and 

receive data, perform loopback tests, as 

well as get information about the status 

of the SpaceWire links and data 

transfers.  The main screen of the 

application is shown in the figure on 

the right side of these lines. 

For performing the tests against the Gaisler Research’s RTC, several applications 

have been developed for the RTEMS Operating System [3]. These applications allow 

sending and receiving data over a SpaceWire link, measuring the time used to carry 

out the transmission and comparing data sent and received so that they are equal, 

allowing for a data integrity test. A screen capture of the application is shown in 

figure 1.  

 

Figure 1: Application for controlling Gaisler Research’s RTC. 

3 TEST RESULTS 

For testing and validating our IP Codec implementations, three kind of tests were 

carried out: 

a) PC/RTC to FPGA and FPGA to PC/RTC data transmission: This test allows to 

determine the maximum data rate achievable. The FPGA is programmed with 

our SpaceWire CODEC, plus a component that generates data and sends it 

through the SpaceWire Codec, and a data receiver component which reads the 

data that arrives from the SpaceWire link through the Codec. 
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In this test, a stream of data is sent from the PC/RTC or FPGA to the other end 

of the link, and the time it takes to transfer the data is measured. 

b) Data Integrity test: For this test, the FPGA is programmed with our SpaceWire 

Codec, plus a FIFO Buffer and an interface component. This interface 

component has two tasks: first, it reads data that arrives from the SpaceWire 

link through the Codec and stores it in the FIFO Buffer.  When there is data 

available in the buffer, this component reads it and sends it through the Codec. 

In this test, a PC sends several fixed-sized packets through the SpaceWire link, 

filled with random data. The IP Codec resends the data to the PC upon 

reception. In the PC, the data received is compared with the data sent to check 

if there are errors. 

c) Loopback test: This test is similar to the first one, but the Codec outputs are 

connected with its inputs.  This allows to determine the maximum operating 

frequency of the Codec.  Also, when sending data through the link, it allows to 

determine the maximum data rate for simultaneous transmit and receive 

operations. 

General testing results are presented on figure 2. 

 

Figure 2: SpaceWire IP Codec test results 

Other tests were also carried out for the Xilinx Virtex4, Xilinx Spartan3E and Actel 

ProASIC3E implementations: 

 Data Integrity: Test carried out successfully on all implementations, 

transferring and comparing 25.000 packets of 21.844 bytes each. 

 Loopback Test: Link established successfully on all implementations, with a 

transmitter speed of 290 Mbit/s for Xilinx Spartan3E, 250 Mbit/s for Xilinx 

Virtex4 and 270 Mbit/s for Actel ProASIC3E.  Data throughput was measured 
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to be 218,45 Mbit/s for Spartan3E, 190,512 Mbit/s for Virtex-4 and 204,8 

Mbit/s for ProASIC3E. 

 Post Place&Route Simulation: Two instances of the FPGA design explained in 

the data transmission test were tested against each other. A SpaceWire link 

was established successfully on all implementations, at 300 Mbit/s for 

Spartan3E, 400Mbit/s for Virtex4 and 270 Mbit/s for the ProASIC3E 

implementation.  Exchange of data was carried out normally in all cases. 

3.1 ACTEL AXCELERATOR 

This implementation has only been tested on post-layout simulation. Two instances of 

the FPGA design explained in the data transmission test were tested against each other 

at 200 Mbit/s. A link was established successfully and a transfer of a 20480 byte 

packet took 1075,761 µs, which results in a data rate of 152,301 Mbit/s. 

4 OCCUPATION DATA 

In figure 3, the reader can find the occupation data for the four implementations of the 

SpaceWire Codec, as well as data for alternative solutions from AeroFlex Gaisler and 

ESA. Information from Star Dundee is also shown below. Please keep in 

consideration that the data from these alternative solutions could also include 

additional functionality besides the SpaceWire Codec. 

  

 

Figure 3: SpaceWire IP Codec occupation data 

 Star Dundee [6]: Approximately 7% of an Actel RTAX1000 or 4% of a Xilinx 

Spartan3E 1600 

5 CONCLUSIONS AND FUTURE WORK 

A SpaceWire IP Codec has been developed for four of the most used FPGA families, 

which allows for a high bandwidth point to point data exchange. Compatibility tests 

of our SpaceWire Codec with current commercial alternatives have been carried out 
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successfully, reaching data throughputs of up to 217,39 Mbit/s on a Xilinx Spartan3E, 

192,31 Mbit/s on a Xilinx Virtex-4 and 192,31 Mbit/s using an Actel ProAsic3E.  On 

simulation, an Actel Axcelerator implementation reached 152,301 Mbit/s.  

Work is in progress to enhance the IP Codec’s functionality, adding support for 

Packet Routing, RMAP [7] and CCSDS [8], as well as increasing the maximum 

operating speed, especially for the Xilinx Virtex implementation where the maximum 

operating frequency in simulation was greater than the maximum frequency 

achievable for a normal operation in the FPGA implementation. 
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ABSTRACT 

The design of the SpaceWire based satellite onboard system circuits was a part of the 

job in the development of Space Solar Telescope (SST) project, which has been 

completed by National Astronomical Observatories, Chinese Academic of Sciences. 

In order to prove the circuit was faithfully implements the SpaceWire protocol’s 

specification, formal verification techniques were applied during the process of 

development of the circuits and automated model checking approach was employed. 

The implementation designed as VHDL models on the FPGA for SpaceWire link 

interface circuit under investigation has an extension state (Error Analysis) in the state 

diagram providing link initialization, normal operation and error recovery services 

between transmitter and receiver on exchange level. Some properties were checked 

successfully on the original model by using Cadence SMV tool and some properties 

were verified to false. The results of the verification showed we have to update the 

design according to the counterexamples to guarantee the circuit design implemented 

on FPGA is reliable and can be integrated in the SST project. 
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1 INTRODUCTION 

The correctness of design is one of the key problems to large-scale complex digital 

system design, namely, design verification. Unfortunately, the complexity of the 

verification exponentially increases with the increasing scale of chip. Particularly, as 

complex the state of the art is, the cost of trial-produce is quite expensive. Safety is 

the first place for many very important systems, for instance, the railway signal, 

nuclear power station, aerospace, national security and large communication system 

[1]. Any mistake of design possibly causes huge economic losses or catastrophic 

consequences as personnel casualties. The design of the SpaceWire based satellite 

onboard system circuits was a part of the job in the development of Space Solar 

Telescope (SST) project, which has been completed by National Astronomical 

Observatories, Chinese Academic of Sciences. In order to prove the circuit designed 

for the highly reliable communication based on SpaceWire protocol was faithfully 

implements the SpaceWire protocol's specification, this study aimed to verify the 

SpaceWire link interface, which was one of the important elements of the SpaceWire. 

Formal verification techniques were applied during the process of development of the 

circuits and automated model checking approach was employed. 

Techniques for automatic formal verification of finite state transition systems have 

developed in the last 30 years to the point where major chip design companies are 

beginning to integrate them in their normal quality assurance process. The most 

widely use of these methods is called Model Checking [9]. In model checking, the 

design to be verified is modelled as a finite state machine, and the specification is 

formalized by writing temporal logic properties. The reachable states of the design are 

then traversed in order to verify the properties. In case that the property fails, a 

counter example is generated in the form of a sequence of states [7]. In general, 

properties are classified to ''safety'' and ''liveness'' properties. The former declares 

what should not happen or what should always happen; the latter declares what should 

eventually happen. Specification is a process to briefly express the design system and 

its properties with formal language. Formal specification description language has 

strict syntax and semantics, which are used to express the functional behavior of the 

system, such as timing characteristics or internal structure. 

The main fault of traditional testing and simulation verification is that they are 

incomplete. In another words, they can only prove that the design has error but can 

not guarantee the design has no error. So, they are often suitable to find the vast or 

obvious errors in the initial verification, but not to find complex and subtle errors [1]. 

The main advantage of the formal verification is completeness. Through model 

checking, a method of the formal verification, we can find complex or subtle design 

mistakes which other methods cannot find. So, model checking is an effective way of 

the computer system design verification. 
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2 APPROACH 

2.1 VERIFICATION FLOW 

The overall flow of our approach is depicted in Figure1. The verification flow is also 

applicable for other classes of circuit verified by model checking methods. 

Requirement/
Protocal

Hardware RTL 
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(Kripke Structure)

Model
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Counter 
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Update 
RTL Design

V
e
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Figure1. Formal Verification Flow 

The inputs to the process are the RTL description of the circuit, a formal specification 

(possibly comprising many properties/assertions). We elaborate on the latter point, for 

Properties/Assertions of SpaceWire control, in Section 3.2. The formal SpecaWire 

control model is automatically compiled into a finite state machine [11]. 

The RTL is translated into a formal model of the circuit, either manually or using 

automated tools. For the work in this paper, this is a description in the input language 

of a model checker. (The model checker Cadence SMV [2] includes an automated 

translator from Verilog to its input format.) However, in general it would depend on 

the formal verification (FV) tool that is used. If the verification result is false, then 

update the RTL design according to the counterexamples generated by the model 

checker automatically. 

2.2 FORMAL MODEL 

The hardware engineer’s design is usually some sort of a finite automaton. 

Independent of the concrete design language, this finite automaton can be represented 

by a kripke structure, which is the standard representation of models in the model 

checking literature [9]. The kripke structure is a quintuple K=(S, S0, R, AP, L), where 

S is the finite state set of all the Boolean state variables {s1, s2 … sn}, S0  ⊆ S, 

denoting the set of initial states in which the circuit can begin operation, R is the 

transition relation of the system defining how the system evolves over time, AP is the 

set of all the atomic proposition and its negative proposition, and L is the marking 

function which maps the state s ∈ S into the true atomic proposition set of S [1]. We 

can also regard K as a marked directed graph with a root, S is the vertex set of the 

graph, R is the edge set of the graph, L is marking function of the vertex, and the root 

is s0. 
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Given an RTL-level circuit designed with hardware description language, for example 

Verilog, a formal model will be created automatically by the X-HDL tool as 

mentioned above [10]. Timing-related details in the RTL are modelled using 

non-determinism, so that the resulting formal model exhibits a superset of the actual 

system behaviours. Any verification performed on the formal model will then be 

faithful with the specification. 

3 SPACEWIRE CONTROL MODULE 

SpaceWire[8] is a network for space applications composed of nodes and routers 

interconnected through bi-directional high speed data links. According to the 

SpaceWire website hosted by the ESA, it has been used in missions of the ESA as 

well as space agencies NASA and JAXA. The SpaceWire standard [8] describes 6 

protocol levels: physical, signal, character, exchange, packet, and network. In this 

paper, we concern with the exchange level that defines the protocol for link 

initialization, flow control, and link error detection and recovery (similar to the more 

widely known Transmission Control Protocol, TCP). Our main case study is the 

SpaceWire control module of a node in the SpaceWire network, which is 

implemented by our group in VHDL description language. Unfortunately, as VHDL 

is not the required input language of any model checking tool available to us at this 

moment, the design is translated from VHDL into Verilog by X-HDL [10]. With aid 

of this tool, code in Verilog was automatically translated into the input code with the 

acceptable language for the Cadence SMV model checker. In the mean time, English 

language specifications from the standard document [8] were translated into formal 

specifications in linear temporal logic and inserted into the SMV file as assertions to 

be checked [3]. 

3.1 MODEL 

A SpaceWire end node comprises three modules: a transmitter (TX), a receiver (RX), 

and a state machine that sends control signals to them (FSM). We abstracted the 

control module code from our whole design. Generating a SMV model from Verilog 

involved straightforward transition for the most part, retaining the control structure, 

and only abstracting away some data and timing in the Cadence SMV checking tool 

[2]. FSM module indicating how state was abstracted to be the SMV model is briefly 

described the following part [4]. Further details may be found in the standard 

document [8]. 

The FSM controls the overall operation of the end node. Its operation is shown in 

Figure2. The sequence of state ErrorReset, ErrorWait, and Ready provide a 

mechanism of initializing the SpaceWire node, either coming from a whole system 

reset or triggered by an error. During this sequence of operation, RX is enabled to 

receive, but TX is prohibited from sending. In the Started state, TX can send NULL 

signals to the other end, to establish a connection. Next, the FSM enters the 

Connecting state where TX is enabled to send flow control tokens (FCTs). When RX 
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receives FCTs, it indicates that the other end has space in its receive buffer for data. 

The Run state is the state for normal operation where packets flow freely in both 

directions across the link. The node remains in the Run state until an error occurs or 

until the link is disabled [8]. An ErrAnalysis_DataSave state was added in order to 

improve the error analysis and process ability. When an error occurs or the link is 

disabled in the run state, FSM enter into ErrAnalysis_DataSave state. In the same 

time, FSM save and analyze the error and the data. If the data has been saved and the 

error has been read, then the FSM enter into ErrorReset state, or still in the 

ErrAnalysis_DataSave state. 
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Figure2. SpaceWire Control Module State Graph 

The end nodes communicate over a channel that was modelled in SMV to be capable 

of dropping or creating parity errors in both control and data packets. (Appropriate 

''fairness'' constraints [6] were imposed on the channel to ensure that a packet would 

eventually get to its destination, even if it is dropped several times.) 

3.2 FORMAL SPECIFICATIONS 

25 SMV assertions were added in linear temporal logic corresponding to the 

specification written in nature language in the protocol [8]. Temporal logic formulas 

presented as formulas in ordinary Boolean logic, except that true value of a formula in 

temporal logic is a function of time. Some new operators are added to the traditional 

Boolean operators ''and'', ''or'', ''not'' and ''implies'', in order to specify relationships in 

time. The new operators are termed as tense operator consists of G (global), F (future), 

X (next) and U (until). G p means that p will keep true all the times in the future and is 

Formal Verification for SpaceWire Link Interface Using Model Checking

189



read as ''eventually p''. The formula F p express p must hold true at some time in the 

future and is read as ''eventually p''. In addition, we have the ''until'' operator and the 

''next time'' operator. The formula X p means that p will be true at the next time and is 

read as ''next p''. The formula p U q means that q is eventually true, and until then, p 

must always be true and is read as ''p until q'' [3]. 

No Reference in[9] Assertion 

1  Sec. 8.5.2.2(c) assert G(!Reset & After64 &SpacewireControllerCurrentState 

= 0 -> X(SpacewireControllerCurrentState = 1)); 

--When the reset signal is de-asserted the ErrorReset state 

shall be left unconditionally after a delay of 6,4 μs (nominal) 

and the state machine shall move to the ErrorWait state. 

2 Sec. 8.5.2.3(b) assert G(SpacewireControllerCurrentState = 1 -> 

X(!RX_Reset & TX_Reset )); 

-- In the ErrorWait state the receiver shall be enabled and the 

transmitter shall be reset. 

3 Sec. 8.5.2.4(a) assert G(X(SpacewireControllerCurrentState = 2) 

->(SpacewireControllerCurrentState = 1 | 

SpacewireControllerCurrentState = 2)); 

--The Ready state shall be entered only from the ErrorWait 

state. 

4 Sec. 8.5.2.5(g) assert G(SpacewireControllerCurrentState = 3 & 

(DisconnectionError | FirstNULLreceived_internal & 

(RX_Error | RX_GotSomethingWrong)) -> 

X(SpacewireControllerCurrentState = 0)); 

--If, while in the Started state, a disconnection error is 

detected, or if after the gotNULL condition is set, a parity 

error or escape error occurs, or any character other than a 

NULL is received, then the state machine shall move to the 

ErrorReset state. 

Table1. Selected Formal Specification 

Table1 lists the representative assertions. Specifications are classified into four 

categories, and each category is represented in the table. The first set of specifications 

is on the FSM operation, indicating how and when the system can move between 

FSM states, as shown in Figure2. The second set is related on the cases whether the 

transmitter and receiver are enabled or not. The third presents the situations that 

current state is transferred from itself or the previous state. The fourth is based on the 

interaction between FSM, TX, and RX, exemplified by row 4 in the table that deals 

with error handling. Our formal specification is as comprehensive as the 

corresponding English language specifications in the standard documents.  

3.3 RESULTS 

An SMV model with 333 lines code (including assertions) was generated based on a 

design with 511 lines code Verilog language. According to the SpaceWire protocol, 
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the formal specifications are created, the state transition properties indicating that the 

current state is from itself or the previous state is verified to be true. The error 

handling properties are verified to be false. For instance, the assertion, indicating that 

if any error occurs, the ErrorWait state will move into the ErrorReset state in the 

SpaceWire standard document section 8.5.2.3 (e), is verified to be false. The 

counterexample of it shows that the error occurs, but the FSM do not move into the 

ErrorReset state. It might be the result of the case that our assertion is not stated as the 

specification of SpaceWire protocol or the RTL designed by our group really has 

some error. We will continue to consummate our formal verification and update our 

RTL design according to the verification results. 

4 CONCLUSIONS AND FUTURE WORK 

The translation from VHDL to SMV is automatically. Some properties of SpaceWire 

control module were verified successfully, and the remaining properties will be 

verified in the future. Although the system of assertions is quite comfortable, we have 

to study the informal descriptions of parts of the design and often formulate our own 

assertions to verify the design, because hardware designers are often not aware of all 

presumptions they use to believe that their source codes are correct. Although the 

model checking verification is complete, it is easy to generate the state space 

combination explosion problem. Users of model checking tools typically consider it a 

compliment to the traditional methods of testing and simulation, and not as an 

alternative. 
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ABSTRACT 
The ESA-project "FPGA based generic module and dynamic reconfigurator" targets 
the development of a hardware architecture, called DRPM (for Dynamically 
Reconfigurable Processing Module). The goal of the DRPM is to develop a system 
that allows for the adaptation of hardware components in flight at run-time. This is 
enabled by the implementation of an SRAM-FPGA-based partially reconfigurable 
core, which is embedded into a system hosting a reconfiguration controller and a 
system controller providing suitable interfaces for space applications. Maximum 
flexibility is realized by implementing SpaceWire interfaces that enable the DRPM 
integration into a SpaceWire network. Moreover, the SpaceWire RMAP protocol is 
used for remote access to registers and memory banks of the DRPM. 

1 INTRODUCTION 
One of the main advantages of the SpaceWire protocol is the reusability of already 
developed SpaceWire-based memory units and payload processing components. The 
reusability does not only reduce the development costs, but also improves the 
reliability of the systems. Therefore, there is a need for increasing the reusability of 
already developed payload processing components for future missions. With respect 
to hardware devices, SRAM-based FPGAs offer reconfigurability, which allows for 
the development of generic payload processing modules. The use of generic modules 
in a space environment has numerous advantages. In terms of system-specific 
hardware, a reconfigurable generic module can ensure maximum reuse of 
development across different systems. Since high development costs are usually 
incurred during custom FPGA development, a more modular approach can be used 
with only custom modules being added as peripheral systems within the FPGA.  
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Current and upcoming application specific standard products (ASSPs) offer limited 
processing performance, which require multiple device instances in many cases to 
support the high data rates provided by current sensors. In contrast to ASSPs, FPGAs 
are advantageous for common high data rate applications like image processing, 
compression, and generic signal processing. Compared to general purpose processors, 
FPGAs often offer a better performance and more adaptability, particularly for 
applications where a parallelized algorithm can be implemented on the FPGA. 

Reconfigurable hardware allows payload processing to be changed or adapted during 
a mission. Therefore, systems can be freely adapted to every possible scenario, even if 
it was not foreseen at design time. Moreover, if the devices can be reconfigured 
dynamically, this adaptation can also be done in an efficient manner during run-time, 
where parts of the device can remain operative, whilst others are changed. This allows 
for implementing time-sharing of the reconfigurable resources between different 
applications, thus increasing the area efficiency. 

The following sections show the DRPM in detail, emphasizing its SpaceWire 
functionality, which is core to the DRPM concept in terms of payload system 
integration. The SpaceWire capabilities of the DRPM are also complemented by 
additional interfaces for directly accessing high speed instruments.  

2 DYNAMICALLY RECONFIGURABLE PROCESSING MODULE 
The focus of the project is on the development of the reconfigurable core including its 
control mechanisms. The DRPM demonstrator aims at showing the capabilities of the 
reconfigurable core by executing different payload processing applications on the 
same hardware. Concerning the harsh space requirements, mitigation of radiation 
effects and recovery in case of failure is emphasized. 

The DRPM features several SpaceWire interfaces for avionics and instrument source 
data allowing for the DRPM to be integrated into a SpaceWire network as general 
purpose processing node. The DRPM supports the SpaceWire remote memory access 
protocol (RMAP) [1] in order to enable access to the registers and memory banks of 
the DRPM from other nodes in the SpaceWire network. The SpaceWire RMAP 
functionality allows for access to the working memory of the payload processing 
components as well as access to the program and configuration memory. This is 
useful for debugging purposes or remote uploading of new software applications or 
FPGA configuration files.  

Besides its SpaceWire connectivity, the DRPM features additional dedicated 
instrument interfaces, ranging from high rate instruments interfaced via WizardLink 
to lower rate instruments interfaced via CAN bus, discrete I/O and legacy serial links 
such as e.g. RS422. Instrument control may be performed according to an 
instrument’s specific needs, which may include control via SpaceWire, CAN bus or 
customized discrete interfaces. As an alternative to SpaceWire the avionics can be 
connected via MIL-STD-1553B. The DRPM contains a partially reconfigurable core 
that allows for customized interfaces to be tailored depending on specific needs. The 
main feature of the partially reconfigurable core, however, is to allow for high 
performance data processing algorithms to be implemented to cover a wide range of 
applications. In addition, it shall support in-flight reconfiguration during a mission 
where required, whilst being fault-tolerant to space environment effects typically 
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caused by high energy particles. A demonstrator platform of the DRPM is being 
developed, which is used for system exploration. It is based on the rapid prototyping 
system RAPTOR [2] and features all required hardware components and interfaces. 
Fault injection mechanisms, which emulate effects such as single event upsets, are 
used to verify the fault-tolerance features of DRPM. 

3 PARTIAL FPGA RECONFIGURATION 
The DRPM consists of partially reconfigurable FPGAs (PR FPGAs), which are used 
for the payload processing. When utilizing partial reconfiguration suitable design 
methods are required for partitioning the FPGA resources. In the DRPM a tiled 
partially reconfigurable region as described in [3] is used, where the FPGA area is 
divided into a static region and a partially reconfigurable region (PR region). The 
static region contains system components that are constantly active, while the PR 
region is reserved for dynamic system components, which are referred to as partial 
reconfiguration modules (PR modules). PR modules can be loaded and unloaded at 
run-time according to the needs of the application. The partial reconfiguration is 
performed by a dedicated reconfiguration controller, which transfers the configuration 
files from the PR module storage to the configuration interface of the PR FPGA. In 
order to mitigate single-event upsets (SEU), hardening techniques such as triple 
modular redundancy and configuration memory scrubbing are applied. 

4 SYSTEM EXPLORATION 
In the following, two example systems are introduced, which can be realized by the 
DRPM demonstrator platform. Both systems feature avionics and source data 
interfaces as specified in Section 2. The building blocks are the SpaceWire RTC 
AT7913E, one or more partially reconfigurable FPGAs (PR FPGAs), and a 
communication FPGA (COM FPGA), which is used to interconnect the SpaceWire 
RTC and the PR FPGAs. 
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Figure 1 DRPM with external device interface control via the COM FPGA. 

In the first system, shown in Figure 1, the interface control is implemented in the 
COM FPGA. It includes source data instrument interface controllers, such as 4 
SpaceWire RMAP IP Cores [4], a Wizard-Link controller, general purpose IO, and a 
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MIL-STD-1553B controller. The system controller is connected via a FIFO and a 
memory mapped IO interface.  The COM FPGA implements a Flash controller to gain 
access to the PR module storage. The reconfiguration controller is used to apply full 
and partial reconfiguration of the PR FPGA. The inter DRPM interface allows a 
connection to additional DRPMs. The second system, which is shown in Figure 2, 
implements the interface control on the PR FPGA. The only components, which are 
implemented on the COM FPGA are the FIFO interface to the system controller, the 
reconfiguration controller, and the corresponding configuration memory controller. In 
comparison to the external device interface control, the self-hosting interface control 
allows for a closer coupling between source data interfaces and the PR modules used 
for payload processing. The self-hosting interface control requires fewer resources on 
the COM FPGA, but more resources on the PR FPGA.  
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Figure 2 DRPM with self-hosted interface control on the PR FPGA. 

5 CONCLUSION 
In the current state of the project, the hardware and software components of the 
DRPM demonstrator are under development. One of the main features is the 
utilization of dynamically reconfigurable FPGAs, which are used for high 
performance payload processing. The SpaceWire RMAP protocol is used to remotely 
control the DRPM in a SpaceWire network. The flexibility of the DRPM 
demonstrator helps identification of different system architectures for space 
applications. Thus, various systems can be prototyped and analysed before defining 
the final architecture, which is considered for flight use.  
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ABSTRACT 
We present the development status of the ground-support digital data acquisition system for 
the X-ray CCD camera (SXI: Soft X-ray Imager) onboard the ASTRO-H satellite. ASTRO-H 
employs SpaceWire (SpW) as its information network overall, and the CCD data are also 
acquired through it. We have developed the data acquisition system for the SXI BBM 
(breadboard model). In the system, the digitized data are are first stored in the SDRAM of the 
DE I/F, digital circuit board with SpW interface. Then, they are transferred to a SpaceCube1 
(SpC) and finally received by a POSIX-OS computer. The DE I/F board and the SpC are 
connected by a SpW, and the SpC and the POSIX machine is connected by an Ethernet. We 
used the SpC as a protocol converter between SpW and TCP/IP, and run the DAQ software 
on the POSIX system. The DAQ system was stable more than 24 hours. The mean transfer 
speed was, however, 4.4 Mbps, which is slower than the system requirement 8.8 Mbps. We 
succeeded in obtaining and storing the CCD images continuously by this system with the 
analogue part of the BBM. 

 

1 INTRODUCTION 
ASTRO-H is an X-ray observatory scheduled to be launched on 2014. It carries four kinds of 
science detectors covering the 0.1-600 keV energy band, and is expected to reveal various 
high energy phenomena. The information network of ASTRO-H is based on SpaceWire 
(SpW) (see [1]). 
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The X-ray CCD camera onboard ASTRO-H is called SXI[2], and covers the 0.5-12 keV 
energy band. The system has four (2x2 array) CCDs, each of which has 1280x1280 imaging 
pixels and is read out as the 640x640 format with the on-chip pixel binning technique. The 
data are digitized to 12 bits per pixel with a 4-bit attribute. As all of the digital data have to be 
acquired within an exposure cycle (4 sec), the data transfer speed of 8.8 Mbps (including 
margin) is required. 

 

2 SXI BBM 
The components of the breadboard model (BBM) [3] are shown in Figure 1. Sequencer 
supplies timing clocks to DE I/F, Driver Board and Video Board. Driver Board provides 
analogue signals for a CCD. Video Board performs the former-half of ∆Σ-digitization for the 
outputs of a CCD and send the bit stream out to DE I/F. 

DE I/F was developed by Mitsubishi Heavy Industries Ltd. using the Universal SpW Board,  
which includes two FPGAs: User FPGA and SpW FPGA. User FPGA convolves the CCD bit 
stream to 12 bit values, attaches the 4 bit pixel codes (PCODEs) to them and stores them in 
SDRAM. PCODEs are supplied from Sequencer and have the pixel-type information such as 
active, inactive, frame start or line start. The 2 MB space is allocated for the frame data in the 
SDRAM. DE I/F is connected to a SpW network, and the SpW FPGA takes care of the 
communication. As the first step of the SpW-based communication, we used a SpaceCube1 
(simply SpaceCube or SpC, hereafter) as the counterpart. The SpC is also connected to the 
POSIX OS computer by Ethernet. 

Figure 1: A block diagram of the SXI BBM, which consists of circuit boards of Driver 
Board, Video Board, Sequencer and DE I/F. The solid, the dotted, and the dashed arrows 
show analogue signals, LVDS, and LVTTL respectively. The greyed boxes are the digital 
components discussed in the section 3. 
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3 DEVELOPMENT OF THE DATA ACQUISITION SYSTEM 
In this section, we focus on the digital components of the BBM, which are drawn as the 
greyed boxes in Figure 1. Using the digital part of the BBM, we developed the X-ray CCD 
data acquisition system as shown in Figure 2.  

3.1 DATA ACQUISITION STRATEGY 

We set up the SpC as the protocol converter between SpW and TCP/IP; the conversion 
software is a part of “SpaceWire/RMAP Library” [4]. To retrieve the SDRAM data, we 
implemented the data acquisition software named “sxiSpWdaq”, which uses the library and 
carries out the RMAP-related functions such as the packet formation and handling. This 
software repeats the following two steps: (1) sending the data-acquisition start command out 
to the User FPGA logic and (2) reading the stored data through SpW. The software receives 6 
KB of data by each RMAP access, and sends them to internal data buffering manager in order 
to store them in a file system. 

3.2 SPACEWIRE PERFORMANCE 

After implementing the system, we carried out a test run over 24 hours, and the system 
continued working until stopped explicitly. This shows the stability of the SpW system. The 
transfer speed was, however, insufficient: the achieved mean speed was 4.4 Mbps, which is 
faster than the speed for 1 CCD but too slow for 4 CCDs. The bottle neck is the protocol 
conversion. To send SpW packets over TCP/IP, we have to send each packet with a header 
that acts as the packet delimiter and includes the packet length: thus the SpC has to receive an 
RMAP read command packet with two steps, reading the header and the body. It seems, 
unfortunately, that the TCP/IP driver on the SpC is not optimised for such bytes-to-bytes read 

Figure 2: A schematic diagram of the developed DAQ system. We implemented the data 
acquiring software and the data storing software running on POSIX OS. The accesses to DE I/F 
are handled by RMAP communication library. Digitized data are acquired from the SDRAM 
attached to the SpW FPGA to the POSIX system. 

 

Development of SpaceWire Based Data Acquisition System for the X-Ray CCD Camera On Board ASTRO-H

199



 call and the throughput decreases significantly.  

3.3 DATA STORING 

We also implemented the data storing software called “nova2fits”, which obtains the acquired 
data from the data buffering manager. This software monitors the PCODE of each pixel, and 
creates an image file of the FITS format, which is the standard of astronomical electric data, 
with CCfits and CFITSIO libraries [5] when the last pixel of the image comes. This kind of 
the image reconstruction is required because the SDRAM data does not start from the 
beginning of a frame every time due to a skew between the starts of Sequencer clock and of 
User FPGA process of DE I/F. This software does not have a significant affect on the DAQ 
throughput because this runs on the POSIX machine with plenty of processing power. 

4 DEMONSTRATION OF END-TO-END DATA ACQUISITION 
With this system, we drove the whole BBM components including the analogue parts. We 
used a 512x608 CCD chip, cooled it to -15 °C in a vacuum chamber in order to reduce the 
thermal dark current, and irradiated X-rays of 55Fe. The readout pixel rate is 100 kHz and no 
pixel binning was held. One of the obtained images is shown in Figure 4. We verified that the 
BBM adequately works as an X-ray CCD system. 

5 REFERENCES 
[1] Ozaki, M. et al., “SpaceWire driven architecture for the ASTRO-H satellite”, this 
conference, 2010 
[2] Tsunemi, H. et al., “The SXI: CCD camera onboard the NeXT mission”, proceedings of 
SPIE Astronomical Instrumentation, 2008 
[3] Anabuki, N. et al., “SpaceWire application for the X-ray CCD camera onboard the 
ASTRO-H satellite -The BBM development and the EM design-”, this conference, 2010 
[4] Yuasa, T. et al., “SpaceWire/RMAP-based Data Acquisition Framework for Scientific 
Instruments: Overview, Application, and Recent Updates”, this conference, 2010 
[5] NASA Goddard Space Flight Center, “FITSIO Homepage”, http://heasarc.gsfc.nasa.gov 

Figure 3: An example of a part of the frame image: we selected a part of the CCD chip. 
The X-ray events are seen as white dots. 
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ABSTRACT 

In many applications SpaceWire networks are used for data transmission from sensors 

(sensor fields) to an onboard computer, for transmission from a computer to 

distributed actuators, data sinks. Multiplexing of data packet flows with small density 

to high density packet flow task and inverse task of a high-rate flow demultiplexing to 

multiple lower density flows arise. In the article we consider problems of packet flow 

multiplexing and demultiplexing with SpaceWire routing switches. 

Balancing parameters of packet flows, link rates and buffer sizes governs efficiency of 

the buffering mode, routing mode. We consider dependency between utilization of the 

high speed link and buffering, buffer sizes on input and output ports, used in the 

system typical packet size, relation between link speed and data flow density in 

different links, evaluate relation between hardware cost of a routing switch hardware 

implementation and high speed link utilization. 

1 INTRODUCTION 

The main mode in the SpaceWire is wormhole routing with switching on-the-fly. 

Buffering of the packets is also possible. Packet forwarding through switch fabric 

starts when it is received in the buffer or the buffer is full; the packet size could be 

larger than the buffer size. The buffering mode in a routing switch could be used to 

conform speeds between input and output routing switch ports. It could improve 

output port and link utilization by multiplexing data flows, high-rate input port 

utilization by data outflows demultiplexing. Role of this mode illustrated by Figure 1. 
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Figure 1 

Let’s evaluate packet transmission time via system that includes some source nodes, 

connected by switch to one host.  For example, system includes 15 source nodes and 

16-ports  routing switch SpW. Data flows from nodes are equal and low intensive. 

2 PACKET TRANSMISSION TIME EVALUATION 

We consider next variants of system configuration (in switch are used dynamic cyclic 

priorities): 

 Full buffering is 

sources 

Full buffering in 

input ports of switch  

Routing mode in 

switch 

1 Not used Not used On the fly 

2 used Not used On the fly 

3 Not used used With full buffering 

4 used used With full buffering 

For configuration 1 maximal time of packet transmission is: 

transrec1max T*)1( transh TNTTT       (1) 

Trec – transmission time of the packet header from source node to input port of 

switch. It depends on link transmission rate. 

Th – header processing time  

Third component of this formula defines maximal output port waiting time  

N – number of sources 

Ttrans – transmission time to host. It is function from min(packet generation rate, 

link-from-source rate, link-to-host rate) and packet length, buffer size in input port 

(packet could collect in this buffer when it wait for translation to output port) and load 

of output port. In this example we suppose that minimal is packet generation rate.  

For configuration 2 maximal time of packet transmission also could be evaluated by 

formula (1). But in this case Ttrans not depends on packet generation rate, because 

packet is fully buffered on the source 

For configuration 3 maximal time of packet transmission is: 
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Tbufsw – time of collection packet in switch's input port buffer. It depends on data 

packet flow generation rate (we suppose that it is lower than link rate) and packet 

length   

For configuration 4 maximal time of packet transmission is: 

transhufswbufs TNTTTT *)1(b4max      (3) 

where Tbufs – time of packet collection in source buffer (depends on packet 

generation rate)  

Tbufsw – time of collection packet in switch’s input port buffer. It depends on link 

rate and packet length. 

 

Average packet transmission time for configuration 1 and 2 is: 

transav
out

out
ransavhrectransavh T

R
RTTTTWTTT

)1(
*

2

rec1av
   (4) 

where W – average time of waiting output port  

Ttranav – average time of transmission packet to output port. Ttranav=Ttbuf+Ttin.  

Ttbuf – transmission time of packet’s part that placed in input port. 

Ttbuf=(W/Ttin1)*Tout1, where Ttin1 – transmission time of one symbol from host to 

switch’s input port buffer, Tout1 – transmission time of one symbol via output port of 

switch to host. 

Ttin – время передачи оставшейся части пакета из входного порта (со скоростью 

генерации данных в источнике для режима 1 или со скоростью передачи данных 

по линку для режима 2). Ttin=(Plen- W/Ttin1)*Ttin1 

Rout – load of output port 

inLTN *)(*)1(Rout transav  

Lin –density of packet flow from one source. Lin=1/(Plen*Rs), where Plen – packet 

length, Rs data generation rate in source. 

 

Average packet transmission time for configuration 3 is: 

transav
out

out
ransavhufswtransavhufsw T

R
RTTTTWTTT

)1(
*

2

bb3av
  (5) 

In difference from formula (4) in this case Ttransav=Plen*tout1 

Average packet transmission time for configuration 4 is: 
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transav
out

out
ransavhufswtransavhufswbufs T

R
RTTTTWTTTT

)1(
*

2

bb4av
 (6) 

In this formula Ttransav derived as in (5) 

3 RESULTS AND CONCLUSSION 

We compare timing parameters of four configurations in same switch (with same 

input buffer size) for transmission packets which length is not more than buffer size.  

If throughput of output port/link is not essentially bigger, than summary data 

transmission rate from all sources then results for system with routing on the fly and 

for system with full buffering are practically equal (Figure 2, a). It happens because 

when we use routing on the fly first packet goes to output port very slowly (on packet 

generation rate or on link rate). On this time packets from other sources collected on 

buffers of input ports and then translated to output port very quickly (on output port 

link rate). 

Timing parameters of configuration 3 are better that timing parameters of 

configuration 2 but if input link rate grow and throughput of output port/link is not 

essentially bigger, than summary data transmission rate from all sources parameters of 

these configurations are practically equal (Figure 2 ,b).  
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ABSTRACT 

Transmission of CCSDS Space Packets [4] over ECSS SpaceWire links [10] is 

nothing new, but with the new ECSS SpaceWire protocols standards, it is possible to 

implement telemetry encoders and telecommand decoders offering interoperability. 

There is however an alternative method also based on the ECSS SpaceWire protocol 

standards offering additional services. The two approaches are compared in this paper. 

CCSDS PACKET TRANSFER PROTOCOL 

1.1 OVERVIEW 

As stated in the SpaceWire - CCSDS packet transfer protocol, ECSS-E-ST-50-53C 

standard [13], the CCSDS Packet Transfer Protocol (called CPTP hereafter) has been 

designed to encapsulate a CCSDS Space Packet into a SpaceWire packet, transfer it 

from an initiator to a target across a SpaceWire network, extract it from the 

SpaceWire packet and pass it to a target user application.  

1.2 FORMATS 

The CCSDS Space Packet defined in [4] is shown in the figure hereafter. The CCSDS 

Packet Transfer Protocol should not be confused with the Encapsulation Packet [7] 

defined by CCSDS. 

Figure: CCSDS Space Packet 

The CCSDS Space Packet is one of several data units [5] that can be transferred in 

Telecommand [3][9], Telemetry [1][8] or AOS Transfer Frames [2]. The CCSDS 

Packet Transfer Protocol packet is shown in the figure hereafter. 
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Figure: CCSDS Packet Transfer Protocol packet 

1.3 SERVICES 

The CPTP approach provides a unidirectional data transfer service from a single 

source user application to a single destination user application through a SpaceWire 

network. The protocol does not provide any means for ensuring delivery of the packet 

nor is it responsible for the contents of the packet being a CCSDS Space Packet. This 

actually opens up the possibility to transfer other types of data as per [5] than CCSDS 

Space Packets, e.g. SCPS-NP [6] or Encapsulation Packet [7], although not allowed. 

The protocol does provide several steps of checking before a CCSDS Space Packet is 

passed to the target user application, of which one introduces some level of 

complication when implemented in hardware.  

Implicitly it is assumed that the Target Logical Address field is matching the 

destination, and that the Protocol Identifier field is 0x02. Any mismatch should result 

in the received SpaceWire packet not being considered for the CPTP handling. 

The Reserved field is checked to be all zero, if not then the received SpaceWire packet 

is discarded and an error indication is sent to the target application. The Reserved 

Field is located close to the beginning of the SpaceWire packet, making it easy to 

check without the need to buffer any part of the SpaceWire packet.  

If the SpaceWire packet is completed with an End Of Packet (EOP) the CCSDS Space 

Packet is passed to the target user application. However, if SpaceWire packet is ended 

with an Error End of Packet (EEP), SpaceWire packet is discarded and an error 

indication is sent to the target application.  

1.4 IMPLICATIONS 

By definition, EOP or EEP are at the end of the SpaceWire packet, requiring the 

SpaceWire packet to be temporarily buffered before the check can be performed. With 

a CCSDS Space Packet size of maximum 65542 octets, this can be problem from an 

implementation point of view, especially if implemented completely in hardware. 

CPTP does not provide any means for status reporting. 

1.5 SIMILAR IMPLEMENTATIONS 

The new CPTP protocol has some similarity with what is used in the Single Chip 

Telemetry and Telecommand device (SCTMTC or AT7909E) [15]. The User 
Application field could be seen as a mechanism for routing, as the SCTMTC uses the 

first byte of the SpaceWire packet header to route Space Packets to different telemetry 

Virtual Channels. The actual Space Packet is carried in the cargo of the SpaceWire 

packet, and is ended with an EOP. What is new for CPTP is the introduction of the 
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Target Logical Address, Protocol Identifier and Reserved fields, the two former being 

specified also for Remote Memory Access Protocol (RMAP) [12]. 

For the SCTMTC we implemented a mechanism for retracting a Space Packet that 

had been partially inserted in the telemetry encoder in the case the reception of a 

SpaceWire packet was terminated with an EEP. This is similar to what is required by 

CPTP. The buffering of the Space Packet was thus done in the telemetry encoder, 

which is implemented for nominal functionality and did not require extra resources. 

REMOTE MEMORY ACCESS PROTOCOL 

1.6 OVERVIEW 

The SpaceWire Remote Memory Access Protocol (RMAP) [12] allows the 

implementation of a standardized communication method for reading and writing to 

remote memory and registers. This eliminates the plethora of existing ad hoc 

protocols that have been used in previous developments, allowing designers to focus 

their efforts on a single re-usable solution that can be transferred between projects. 

1.7 FORMAT 

The RMAP format is defined in [12] and a write command is shown hereafter.  

Figure: RMAP Write Command 

The adoption of the Advanced Microcontroller Bus Architecture (AMBA) [14] as the 

on-chip bus fabric used in ESA developments was made simultaneously with the 

development of the LEON processor. The combination of RMAP and AMBA 

provides a means for remote access via SpaceWire to resources in a system-on-chip 

design, any AMBA slave connected to the bus can thus be read and written to. This is 

utilized in an alternative method for sending CCSDS Space Packets over SpaceWire. 
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1.8 SERVICES 

Aeroflex Gaisler has implemented telemetry encoders and telecommand decoders in 

Field Programmable Gate Array (FPGA) devices [16] where the communication is 

done via SpaceWire links, but by means of the RMAP rather than CPTP.  

The Space Packet is carried in the Data field of a RMAP write command. The RMAP 

protocol provides protection of the Space Packet by means of the 8-bit Data CRC 
field, which can be used to discard any packets that have been received with errors. 

RMAP also supports acknowledgement reporting to the initiator. (Space Packets can 

themselves include a 16-bit CRC as optional Packet Error Control, but would require 

checking of the Space Packet which is not in line with a layered protocol approach.) 

The routing is done by means of the addressing capability of RMAP commands; e.g. 

the address can be used for distinguishing between virtual channels on a downlink. 

The Space Packet is written into an AMBA slave, which is addressed over the AMBA 

bus using the RMAP Address field. The AMBA slave forms the input to Virtual 

Channel Generation function of a telemetry encoder. Space Packets or any other user-

defined data block can be input. Writing is only possible when the packet valid 

delimiter is asserted, else the access results in an AMBA access error. In the case the 

data from a previous write access has not been fully transferred over the interface, a 

new write access will result in an AMBA retry response. The progress of the interface 

can be monitored via the AMBA bus, which incorporates status and monitoring 

functions including busy and ready signaling for a new word or a new Space Packet. 

COMPARISON 

Since both RMAP and CPTP adhere to the same SpaceWire protocol identification 

ECSS standard [11], there is no problem mixing them in the same implementation. 

What they have in common is that a SpaceWire packet carries one-and-only-one 

Space Packet.  

The CPTP protocol does however neither provide means for reporting the delivery of 

the packet, nor adding data error detection as with the RMAP approach (other than 

parity on the SpaceWire link, which both approaches implement). Consequently 

CPTP requires fewer overheads.  

CONCLUSIONS 

Both RMAP and CPTP provide basics means for CCSDS Space Packet transfer over 

SpaceWire, the former providing more protection against errors and possibility for 

acknowledgement and status monitoring, whilst the latter results in less overhead. 
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ABSTRACT 

Aeroflex Gaisler (Sweden) is developing the software and the digital part of a Motion 

Control Chip (MCC) in an activity that is lead by ÅAC Microtec (Sweden) under a 

contract with the European Space Agency (ESA). The digital logic is implemented in 

a Flash-based FPGA, including SpaceWire [1] RMAP [2] interfaces. 

OVERVIEW 

The Motion Control Chip (MCC) is a freestanding component that can control up to 

three brushed motors or one brush-less motor in torque, position or velocity mode, 

and will be implemented as an advanced 3D-multi-chip-module (3D-MCM) [3]. 

The baseline design includes a field programmable gate array (FPGA) as a naked die 

for the implementation of the digital part. To allow for programmability and future 

enhancements, a re-programmable FPGA has been selected.  

 

The choice of a re-programmable over a one-time programmable FPGA has been 

driven by various factors, the two most prominent being that the 3D-MCM should be 

possible to program to different customer’s needs and that qualification of 

programming procedures for one-time programmable FPGAs as a naked die is not 

straightforward. 

 

Figure: Block diagram of MCC 
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FUNCTIONALITY OF FPGA 

1.1 OVERVIEW 

The digital design forms a system-on-a-chip comprising key elements such as the 

fault-tolerant LEON3-FT 32-bit SPARC processor [5], optional floating-point unit, 

debug support unit, etc. The main interfaces of the FPGA are listed hereafter: 

 SpaceWire link with optional RMAP to support remote memory access for 

software download and debug, based on ECSS standards 

 Optional redundant CAN 2.0A/B bus interface, based on ECSS standards 

 SPI interface for access to ADC devices, support for multiple accesses in 

parallel to allow correlations 

 Pulse Width Modulation: symmetric and asymmetric 

 General Purpose Input Output 

 Memory Controller with EDAC to protect external PROM & SRAM memory 

 JTAG Debug Link, used for software download & debug 

 

 

Figure: MCC FPGA block diagram 
 

1.2 FPGA TECHNOLOGY 

The Actel ProASIC3 RT3PE3000L FPGA part has been chosen for the 

implementation of the digital logic. Although this part can tolerate a total ionizing 

dose (TID) of up to 20 krad and is basically single event latch-up (SEL) free, it 

exhibits some sensitivity to single event upsets (SEU) and transients (SET) that needs 

to be taken into account during logical design. 

 

Main features of the Actel RT3PE3000L FPGA are listed hereafter: 

 3,000,000 System Gates  

 75,264 Logic Tiles  

 504 kbits RAM 

 1 kbits FlashROM (user accessible) 

 RT ProASIC3 use same process as commercial UMC 0.13 µm ProASIC3EL 

 RT3PE3000L is the same silicon as the A3PE3000L 
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1.3 IMPLEMENTATION APPROACH 

The MCC FPGA has been designed using the same IP cores that are used by Aeroflex 

Gaisler in their LEON3FT-RTAX product line that is based on Actel’s RTAX2000S 

anti-fuse FPGA parts. The portability of the IP cores, all written in VHDL, permits a  

move from anti-fuse to Flash based FPGA technology with a minimum of effort [4]. 

The on-chip block memories have been protected against SEUs using either error 

correction and detection (EDAC) or simple parity code for the detection of bit errors. 

The flip-flops have been protected against SEUs using triple modular redundancy 

(TMR) that can be automatically inserted by the VHDL synthesis tool.  

The probability of SETs in combinatorial logic at modest clock frequencies (25 MHz) 

is very low, according to reports from Actel, which should not require any mitigation 

but will be further investigated. SETs on I/Os and clock lines are monitored by 

dedicated logic that is checking for potential I/O bank turn-offs and detections lead to 

a processor interruption or a reboot.  

A system level watchdog is used to cover any undetected effects due to SETs. 

1.4 IMPLEMENTATION RESULTS 

The MCC design (without CAN interfaces) gives the following approximate 

utilization results after synthesis and place&route results (RT3PE3000L -1): 

◦ Size: > 95% (with TMR and EDAC) 

◦ System frequency: 25 MHz 

 

The following performance figures were obtained: 

 CPU:    20 Dhrystone MIPS 

 FPU:   4 MFLOPS 

 SpaceWire:   20 Mbit/s (twice the requirement) 

 CAN:      1 Mbit/s 

 SPI:    10 Mbit/s 

 JTAG:     1 Mbit/s 

 
Figure: MCC-C FPGA development board 
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COMMUNICATION LINK IMPLEMENTATION 

The system can be interfaced either via CAN or SpaceWire. The advantage of using 

SpaceWire links with built-in RMAP target capability is that the system can be 

controlled remotely, allowing upload of software to the non-volatile Flash PROM 

memory or directly to the volatile SRAM memory etc.   

 

For dextrous robotic arms, wheels, masts, drills and functions needed on rovers, the 

approach is to use a selectively redundant CAN interface. This interface can be 

replaced with a single SpaceWire core without RMAP support, but with two external 

ports implementing automatic selective redundancy similar to the CAN approach.  

 

For exoskeletons and applications where multiple motors are used, it is foreseen to 

use multiple SpaceWire links per unit that are interconnected through software or 

hardware routing. This allows reduction in harness for elongated structures etc. Note 

that the optional floating-point-unit would not fit in these configurations. There are 

two ways in which the links are implemented, either using two SpaceWire cores 

without RMAP and do the routing in software, or using a newly developed SpaceWire 

router [6] with two external ports and one internal port with DMA and RMAP 

support. The latter approach is to be implemented and evaluated in the future.  

 

To allow flexibility and fault-containment, the Low-Voltage Differential Signaling 

(LVDS) buffers required for SpaceWire are implemented with off-chip parts. 

CONCLUSIONS 

The re-programmable RT ProASIC3 FPGA technology fits well within applications 

with moderate radiation requirements. The in-situ programmability enables the 

development of highly miniaturized systems which can be adapted to customers needs 

late in the development cycle. Porting a LEON3-FT system with SpaceWire links 

from anti-fuse to Flash-based technology went smoothly, with much of the work 

already performed previously for the commercial version of the IP core library. 
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ABSTRACT 
Space Cube2 is a core control node in medium size satellites as ASTRO-H as well as 
our small satellites, which are based on SpaceWire communication networks.  In 
order to provide software design kit (SDK) for Space Cube2, reference computer 
architecture, communication model, and database scheme for satellite operation are 
defined.  Reliability and timeliness characteristics are also taken account while 
establishing communication protocol stack.  The SDK consists of T-Kernel real-time 
operating system (RTOS), middleware, software tools, and hardware support 
equipment.  Single source code of T-Kernel is provided as open source, and standard 
middleware is developed by Japanese space industries and JAXA/ISAS. 

1 SPACE CUBE2 DESIGN FRAMEWORK WITH SPACEWIRE 
Space Cube2 shown on figure one is used for several subsystems as data handling 
subsystem (DHS), attitude and orbit control subsystem (AOCS), and mission data 
processor (MDP) as a general purpose onboard computer.  Since it is used over wide 
range of programming style of each subsystem, a reference design framework is 
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Figure 1  Space Cube2 

required for sharing the tools and methods used during application development 
processes. 

It is practical way to establish design framework 
as a software development kit (SDK) in order to 
make developers understand the reference 
model of software and hardware of the onboard 
computer.  The reference model includes 
computer architecture, communication model, 
and database scheme for satellite operation.  
Space Cube architecture [1] is a reference for 
Space Cube 2, which defines the required 
specification of general purpose onboard 
computers.  Communication model consists of 
Functional Model of Spacecraft (FMS) [2] and 
Spacecraft Monitor & Control Protocol (SMCP), 
[3] which are defined by JAXA/ISAS.  
Operation procedure of satellite is managed 
through Definition of Spacecraft Information 
Base 2 (DSIB2) [4], which is also defined by 
JAXA/ISAS.  How to use middleware application program interface (API) is also 
provided as documents.  In order to establish the design framework, several satellites 
as the earth observation satellites, LEO scientific satellites and inter-planetary 
scientific satellites have been investigated.  Based on the assessment, standard middle 
ware requirement, telemetry / command design criteria, and network design criteria 
have been published. 

1.1 SPACE CUBE ARCHITECTURE 

Space Cube Architecture is established for developing Space Cube2.  The architecture 
features following requirement; 

1) Space Cube Architecture is derived from T-Engine architecture.  T-Engine is an 
open platform for embedded use, which is applicable for various kinds of 
microprocessors. 

2) SpaceWire is a mandatory interface for realising scalable network based on 
spacecraft architecture. 

3) Compatibility is maintained through the standard middleware specification and 
API in order to enable accommodating various microprocessors. 

4) In order to satisfy small size, light weight, low power consumption and low cost 
requirement for small satellites, one-chip microprocessors with its peripheral I/O 
devices embedded in itself are recommended. 

1.2 FUNCTIONAL MODEL OF SPACECRAFT (FMS) AND SYSTEM INFORMATION BASE 
(SIB2) 

FMS is defined through object oriented analysis in addition to the operation 
experience of ISAS satellites over many years.  FMS defined through the conception, 
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Applications on SMCP

Retry / Redundancy

RMAP Packet Transfer

Scheduling (Slot Control)

SpaceWire  

Figure 2  SMCP and protocol stack 

which consists of attribute, operation, event, alert, behaviour, and diagnostic rule.  
The schema is defined in SIB2.  The definition of SIB2 is published from ISAS and 
user interface is provided as spread sheet. 

1.3 SPACECRAFT MONITOR & CONTROL PROTOCOL (SMCP) 

The standard middleware is based on Space Monitor & Control Protocol (SMCP).  
SMCP has been developed by JAXA/ISAS, which aims at unified building method of 
commands, telemetry messages, and sequence for all satellites and onboard 
equipments. 

Figure 2 shows the application development scheme.  Telemetry and Command 
processing functions are realised through SMCP. 

Reliability and timeliness are taken into account by exploiting RMAP and Time-Code 
capability.  Retry and Redundancy control are carried out using CRC in RMAP packet.  
Scheduling (Slot Control) are implied by Time-Code.  Initiator node should know the 
time slot, where as Target node doesn’t have to know the time slot provided that the 
node can respond to RMAP packets. 

2 TOOLS 
Dedicated complier for HR5000 radiation hardened processor is developed by JAXA.  
Various software tools and equipments, which include low cost In-Circuit Emulator 
(ICE) for HR5000, are developed by commercial industries as well as space system 
industries.  These tools are integrated on Eclipse framework and commercial version 
of SpaceCube2 is provided for desk-top space-use program development. 

This SDK is developed among space system community which includes universities, 
so multi-lingual text books are also provided for widening space system community. 
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Figure 3  Commercial level version of Space Cube2 (with HR5000 processor) 

                         

Figure 4  Space Cube (original version)                Figure 5  Space Cube with 
with SpaceWire CUBA Software                                        Giga-bit Ethernet 
(Space Cube is developed by JAXA/ISAS and Shimafuji Electric, Ltd.) 

                       

Figure 6  SpaceWire Router (BBM/14ports)     Figure 7  Integrated tools with Eclipse  

3 REFERENCES 
1. Tadayuki Takahashi, Takeshi Takashima, Satoshi Kuboyama, Masaharu Nomachi, 

Yasumasa Kasaba, Takayuki Tohma, Hiroki Hihara, Shuichi Moriyama, Toru 
Tamura, “SpaceCube 2 -- An Onboard Computer Based on SpaceCube 
Architecture”, International SpaceWire Conference 2007, 17-19 September 2007, 
p.65-68. 

2. Takahiro Yamada, “Functional Model of Spacecraft (FMS)”, GSTOS 201, 15 
September 2009. 

3. Takahiro Yamada, “Spacecraft Monitor & Control Protocol (SMCP)”, GSTOS 
200, 15 September 2009. 

4. Takahiro Yamada and Keiichi Matsuzaki, “Definition of Spacecraft Information 
Base 2 (DSIB2), 15 September 2009. 

Poster Presentations

218



LOW-MASS SPACEWIRE 

Session: SpaceWire Components (Poster) 

Short Paper 

Jørgen Ilstad, Martin Suess 

European Space Technology Centre, Noordwijk, Netherlands 
E-mail: jorgen.ilstad(æ)esa.int, martin.suess(æ)esa.int 

  

ABSTRACT 

The current cable specification given in the ECSS-E-ST-50-12C SpaceWire standard 

[1] is defining the detailed construction of the cable. With this, the manufacturer can 

produce a cable compliant to the standard which is able to transmit the signal over a 

length of 10 m and support a data rate of 200 Mbps. A disadvantage is that this cable 

may be heavier and more rigid than necessary for short connections and too lossy for 

distances beyond 10 m.  

For the upcoming update of the SpaceWire standard, the intention is not to specify the 

cable construction, but rather specify physical and electrical parameters which can be 

verified by measurement. These could comprise parameters like Differential 

Impedance, Signal Skew, Return Loss, Insertion Loss, Near-end Crosstalk (NEXT), 

Far-end Crosstalk (FEXT) and radiated EMI. From this specification, cable 

manufactures will be able to design SpaceWire compliant cables optimised for a 

particular application. 

An ESA funded activity aimed to develop a low-mass SpaceWire cable was initiated 

at the beginning of 2010. The activity will define the electrical and physical 

performance parameters of the current SpaceWire cable and use these metrics to 

design a new cable with lower mass properties. Following this initial definition, ESA 

will develop, manufacture and validate a low-mass SpaceWire cable, a cable that is 

mainly targeted at shorter SpW interconnections. The goal is to reduce the mass by 

30% to 50%. An important part of the activity is to determine whether the current 

SpaceWire cable grounding and shielding scheme can be changed without affecting 

performance factors such as EMC/EMI, mechanical properties and data rate 

adversely. 

In this paper, the latest results obtained during the first part of the Low-Mass 

SpaceWire activity will be reported. It discusses candidate cable constructions to 

achieve lower mass, alternative connectors for the cable assembly and the upcoming 

tasks leading up to activity completion. 

1 EFFECTIVENESS OF INNERSHIELDS 

The SpaceWire cable uses multiple shields where the outer shield is connected to the 

spacecraft structure through the connector backshell, and the inner shields of the 

transmitting pairs is grounded to pin 3 of the MDM connectors. As shown in figure 1, 
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the inner shields are 

terminated at one end with 

the idea to avoid ground 

loops to occur. This type of 

arrangement is effective for 

cancelling out EMI at lower 

frequencies, but ineffective 

for higher frequency 

ranges. The rise and fall 

times of a typical LVDS 

signal is close to 1ns, which 

translates to a signal 

bandwidth in the range of 

1-2 GHz. The notion that 

high frequency EMI is not 

effectively reduced by the 

inner shields, means that 

cross talk becomes an 

increasing problem both with respect to cable length and transmission rate. Tests 

carried out in [3] and [4] confirmed the inner shields to have little effectiveness.  

2 SPACE CRAFT GROUNDING 

In order to evaluate what parts of the current SpaceWire cable can be changed it is 

necessary to have an understanding of the typical space craft grounding practises. 

Although these may vary quite a bit from one mission to the other, there are 

commonalities which can be exploited. While diving into the complex domain of 

space craft grounding is out of scope in this paper, the findings in the initial phase of 

the Low-Mass SpaceWire activity shows that the inner shields of the SpaceWire cable 

could be connected on both sides without affecting its general use in a spacecraft.  

3 REDUCING CABLE MASS 

The previous sections highlighted the inner shields as not performing their intended 

function. Hence the cable construction could be adapted in a way which also reduces 

cable mass. Feasible solutions are to either remove the inner shields all together, while 

keeping the outer shield, - or removing the outer shield and grounding the inner 

shields at both ends to the chassis ground. To ensure good EMC performance it is 

important that these screens are continuous and are all 360˚ in contact with the 

backshell of the connector.  

Considering the approaches which save the most mass, we first look the implications 

of removing the inner shields completely. The reduction of mass will give a 35-40% 

decrease in mass compared to the standard SpaceWire cable. Advantages of this 

approach are simpler termination of the shield to the connector backshell, and using 9-

MDM for connections through bulkhead is possible. The drawback is the increased 

cross talk between the individual pairs. For lower data rates below 100Mbps and 

shorter cable lengths, this may not be a significant problem. The cross talk can to 

some extent be reduced by the twisting scheme of the individual pairs, however 

excessive cable tension or bend increases susceptibility to inter pair cross talk.  

1

2

7

6

5

4

3

8

9

Din+

Din-

Sin+

Sin-

GROUND

Sout+

Sout -

Dout+

Dout-

9

8

4

5

6

7

3

2

1

Dout+

Dout-

Sout+

Sout-

GROUND

Sin+

Sin-

Din+

Din-

Low impedance bond from outer braid to connector shell

Inner shields are isolated from one another.

Inner shields around Sout and Dout pairs are

connected together and to pin 3 of connector.

Figure 1: SpaceWire cable shield arrangement. 
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A second approach is to remove the outer shield completely and terminating the inner 

shields 360˚at each end to chassis ground. The termination of the shields is more 

mechanically challenging, but cable mass is significantly reduced and the cable will 

be much more flexible. With this approach the inter pair crosstalk is reduced and 9-

pin MDM connectors will support bulkhead connections. 

3.1 MATERIAL REDUCTIONS 

Other approaches which further reduce mass is using lighter 

materials e.g. using silver plated aluminium instead of 

silver plated copper for the shields. Reducing the wire 

gauge is also an option which is viable for shorter cable 

lengths. In picture 2, the suppression of filler materials (in 

red) is considered to reduce mass. Adding all these options 

together leads to a potential mass reduction of around ~ 45 

– 50 %. At present, the ongoing ESA study with Axon 

cable and University of Dundee has identified a range of 

candidates for mass reduction of the cable. Two candidate 

solutions will be the pre-selected for further analysis and 

tests. The final product will be subjected both to electrical characterisation, and 

mechanical stress tests which are compared to the performance of the current 

SpaceWire cable design. 

3.2 ALTERNATIVE CABLE CONSTRUCTIONS 

In the various options of different cable constructions, the well known twisted pair is 

usually selected. In addition, other alternative concepts based on thin coaxial cables 

are investigated carefully. A circular cable construction solution based on very thin 

coaxial cables is a promising candidate due to the inherent electrical performance. 

Such a design can carry very high data rates, up to several Gbit/s, with the appropriate 

connector for the cable assembly. It is estimated that using small conductor 

(AWG3401) gauge for the coax cables is estimated to give a potential weight saving 

in the range of 60% - 70%. A driving requirement is that such an option must be 

backwards compatible with 9-pin MDM connectors. The challenge is to ensure good 

mechanical robustness of the shield bonding towards connector. 

4 ALTERNATIVE CONNECTORS 

It may be attractive to also identify a small set of alternative connectors to be included 

in a future revision of the SpaceWire standard. These may serve applications where 

very high data rate is required, or where miniaturisation is needed. In the course of the 

Low-Mass SpaceWire (LMSPW) activity, one candidate connector that will be tested 

is the Nano-D connector which is most suited for application where miniaturisation is 

a key driver. An evaluation programme announced in ESA AO/1-6126 for this 

particular connector family is running in parallel to the LMSPW activity. The 

objective is to evaluate the family of ultra miniature Nano-D connectors with respect 

to the specific requirements of space applications or special space programs such as 

the Mars surface explorer. Connector samples manufactured as output of the parallel 

evaluation activity will be used in the frame of the LMSPW activity for evaluation of 

complete cable assemblies.  

 

Figure 2: Suppression of 

fillers 
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Impedance matched connectors are also under the microscope in the ongoing LMSPW 

activity. Previous work performed in [3], [6] have identified candidates which will be 

included in the assessment. Here miniaturisation may not be the driving requirement, 

but rather electrical performance, robustness, suitability for bulkhead connections and 

handling.  

5 PROPOSED SPACEWIRE STANDARD REVISION 

As mentioned in previous publications [5], the current SpaceWire standard contains a 

detailed specification of how the cable should be constructed. In the revision of the 

standard, it is foreseen to rather specify the electrical parameters and tolerances in 

order to allow for manufacturing of cables that suite a particular application rather 

than “one size fits all”. A proposal for standardisation will be one of the outcomes 

from the LMSPW.  

6 CONCLUSION 

In this paper, the status of the currently ongoing activity for the development of a 

Low-Mass SpaceWire cable has been presented. Various elements of cable 

construction have been discussed with emphasis on proposed cable construction 

changes that can significantly reduce mass. The various options will be down-selected 

based on simulations. The remaining candidate solutions will be manufactured and 

assembled in various configurations, including different connector types and cable 

assembly lengths. Each sample is electrically characterised, both in terms of 

performance and EMC/EMI properties with the current ECSS-E-ST-50-12C cable 

specification. In addition, a set of mechanical endurance tests will be performed to 

validate mechanical robustness of the cable, specifically connector/cable junction.  

For shorter cable runs in the range of up to 3-5 meters, the preliminary analysis 

performed in the frame of the LMSPW activity show promising results in terms of 

reducing the cable mass significantly.  

Relaxing the cable construction requirements by replacing them with electrical 

performance parameters will leave more freedom to use cables which are tailored to 

specific applications. They can be for example optimised for low-mass, link distance, 

mechanical handling properties or cost and still fulfil the electrical requirements to 

guarantee the very low bit error rate which is characteristic for SpaceWire.  
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ABSTRACT 

Aeroflex Gaisler is specialized in developing IP cores and System-on-chip solutions 

based on the AMBA [1] on-chip bus. A library of IP cores called GRLIB [2] is 

provided where two SpaceWire IP cores, the GRSPW and GRSPW2, are available for 

AMBA bus based systems providing a master interface, advanced DMA and a RMAP 

[3] target.  

There is a need for a more basic SpaceWire core with a simpler host interface and this 

has been addressed with the new SpaceWire Codec IP core. The core has the same 

SpaceWire link interface as the GRSPW2 but a simplified FIFO based host interface. 

This paper presents the requirements driving the design of the core and features of the 

final core. 

INTRODUCTION 

Aeroflex Gaisler has been providing SpaceWire interfaces intended for AMBA on-

chip bus based systems for several years. Two IP-cores have been available, the 

GRSPW and GRSPW2, which contain advanced functionality such as DMA channels 

and an RMAP target. It has become evident from several projects that this 

functionality is not needed in many cases and the inherent area overhead narrows the 

range of suitable technology alternatives in these cases. 

For example, there might be only one hardware unit requiring SpaceWire in a system 

and it does not have an AMBA AHB on-chip bus. In that case it would more efficient 

to let it access data directly to/from the transmitter and receiver FIFOs for example, 

when implementing router functions [4] or additional SpaceWire protocols such as the 

CCSDS packet transfer protocol [7]. 

To provide a core suitable for these applications the development of a stand alone 

SpaceWire codec IP core was started. 

This paper will first go through the basic properties of the core followed by a deeper 

analysis of the external SpaceWire interface, the dual ports and finally make a 

comparison with existing SpaceWire codecs. 

BASIC PROPERTIES 

Most parts of the SpaceWire codec are identical to the encoder-decoder used in the 

GRSPW2 core. This has the benefit of large parts of the core already being verified, 

validated and proven in hardware. The difference is in the host interface. Where the 
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GRSPW2 has an AMBA based DMA engine and RMAP target processing the 

incoming data the SpaceWire codec instead has FIFOs in both the transmit and 

receive directions containing the SpW characters including the control bit to be able to 

differentiate between EOP/EEP and normal characters [2]. This makes for a 

significant area reduction and simplification of the host interface. Since the user has 

full-control of the order and timing of the characters it gives more flexibility on 

packet generation compared to a bus based DMA solution where the implementation 

of the SpaceWire core restricts what can be accomplished. 

The transmit host interface contains a data signal, write signal, FIFO count and a 

FIFO full indication. Correspondingly the receive interface contains a data signal, 

read signal, FIFO count and FIFO empty indications. This is shown in figure 1. This 

is a simple interface but still powerful enough to enable the implementation of most 

applications. Since the FIFO contents are transmitted and received in order without 

any additional processing a lot of freedom is left to the entity controlling the host 

interface.  

The core also provides a time-code interface which basically transmits what is 

presented on the time input when the tickin input is asserted. For received time-codes 

tickout is asserted and the received time-code is presented on the time-output. No 

time-code validity checking is done (except for parity). This is left up to the user to 

implement externally if needed. 

Separate control signals are also provided for the frequency during initialization and 

run-state. The former also controls the time-out periods used in the link interface 

FSM. 

As for all other cores in the GRLIB IP library the core is written in an technology 

independent way with wrappers for the instantiation of technology dependent modules 

if needed by the target technology. 

The presented features in total gives a fully compliant codec implementation. The 

following sections will show new features which make the core more versatile. 
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EXTERNAL SPACEWIRE INTERFACE 

The signal interface to the SpaceWire network consists of a set of data and data-valid 

signals. These signals should be connected to a GRSPW2_PHY IP core also provided 

by Aeroflex Gaisler which handles the actual low-level clock and signal recovery or 

connecting to an external PHY component. This core is also used by the GRSPW2.  

The benefit of having this in a separate core is that the data is always transferred in the 

same manner at the core interface not requiring any changes in the main core if the 

low-level implementation needs to be changed.  

Another important issue to consider is the application of constraints during synthesis 

and place and route. Names of instances often change between versions of tools and 

the deeper in the hierarchy the instance is the more often the constraints need to be 

changed. By keeping the parts with a high implementation complexity in a single 

entity at the top-level of the design makes it easier to apply constraints.  

On the receiver side the SpaceWire codec supports the standard  self-clocked version 

with clock-recovery using an XOR gate. In addition to this there are three alternatives: 

single data rate (SDR) sampling, double data rate (DDR) sampling and an interface to 

the Aeroflex SpW transceiver [6]. The latter is a standard part provided by Aeroflex 

Colorado Springs which enables the codec to run at a reduced clock frequency 

compared to the SpaceWire link.  

The sampling versions sample the incoming strobe and data signals  and the sampling 

frequency must be at least 1.5 times higher than the maximum bit rate on the 

SpaceWire link. In DDR mode the clock frequency can be reduced compared to the 

Figure 1: SpaceWire Codec block diagram 
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SDR version with the same sampling rate. The benefit of the sampling version is the 

much simpler constraint requirement. Only a single clock frequency constraint is 

needed to get a working implementation. 

On the transmitter side SDR, DDR and Aeroflex SpW transceiver interfaces are 

supported. The DDR interface offers a reduced clock frequency compared to the SDR 

at the same bitrate but is not available for all technologies.  

DUAL PORTS 

The SpaceWire codec also provides an optional second SpaceWire port. The core can 

automatically switch between the ports depending on link activity or it can be forced 

using a specific link using a signal. The use of dual ports requires an additional 

GRSPW2_PHY IP core and internal receiver logic giving a small area penalty. For 

the Aeroflex SpW transceiver it would also require a second transceiver chip 

externally.  

CONCLUSION 

The SpaceWire codec presented is a technology independent and versatile core. It 

provides a fully standard compliant codec, and in addition to this several features such 

as dual ports and support for several different SpaceWire physical layers. The latter 

two features are not found in most other encoder-decoder implementations and make 

the core an area efficient alternative for redundancy applications, and easily movable 

between technologies. 
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ABSTRACT 

Routers are an integral part of most SpaceWire networks and many are available as 

discrete components or IP cores from several providers. Aeroflex Gaisler has 

developed a highly configurable SpaceWire router VHDL IP core to meet the needs 

for technology independent router designs.  

The main design goals have been configurability, technology independence, support 

of all standardized features and expandability. 

This paper will give a short overview of the basic features and focus on how the 

design goals have been achieved and how the resulting implementation is useful. 

INTRODUCTION 

Currently there are only a few SpaceWire routers available either as discrete 

components with a single configuration or IP cores written in a hardware descriptive 

language (HDL). Some lack full support for one or more features such as packet 

distribution and group adaptive routing.  

Aeroflex Gaisler provides a library of IP cores centered around the AMBA on-chip 

bus [1]. This library is designed in a technology independent manner with all 

technology dependent modules used through technology independent wrappers if 

needed by the target technology.  

This paper presents the design of a SpaceWire router VHDL IP core designed for the 

GRLIB IP library to provide a router core which is technology independent, highly 

configurable and provides full standard support. 

BASIC FEATURES 

1.1 STANDARD SUPPORT AND ROUTING CAPABILITIES 

All of the optional features mentioned in the SpaceWire standard [2] are supported to 

some extent. The core supports all the basic features with optional header deletion and 

individually assignable ports for each logical address. A port equivalence register is 

also provided for each physical or logical address which can be used to configure the 

router to be able to send a packet on the determined destination port or any port mark 

equivalent. In other words this is an implementation of group adaptive routing.  

Interval labeling is a name given to a routing table with a consecutive ranges of 

logical addresses going to the same port thus enabling a simpler routing table as 
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claimed in the SpaceWire standard. The SpaceWire router supports ranges but this 

does however not result in a simplified table because the core supports the more 

general case with any address combinations being routable to the same port of which 

ranges is a special case. 

Another optional feature which is not commonly found in current routers is packet 

distribution. The core contains a register for each physical or logical address which 

determines that an incoming packet with a certain destination address should be 

distributed to additional ports. 

1.2 CONFIGURATION 

Configuration is provided through port 0 as defined in the standard. RMAP [3] reads 

and writes are used to access the configuration which are located at static range of 

RMAP addresses.  An experimental implementation of the draft SpaceWire plug and 

play protocol [4] can also be optionally enabled. It is also accessible through port 0 

but is distinguished from RMAP through the protocol ID.  

The core also has the option to use an AMBA APB interface to access the 

configuration registers which is more efficient than sending RMAP packets through 

the AMBA AHB port which would otherwise be the case. 

1.3 SWITCH MATRIX 

Connecting the ports together is a switch matrix where each port can be connected to 

any of the other ports using wormhole routing as required by the SpaceWire standard. 

However, many router designs have duplicated routing tables so that destinations for 

incoming packets can be determined immediately without contention. The downside 

of this is a large area overhead since the routing table has to be duplicated once for 

each port.  

The Aeroflex Gaisler router instead has a single routing table with pipelined access to 

avoid timing problems. One new destination can be determined each clock cycle and 

should be sufficient without any significant performance penalty with a normal 

workload. The case where a performance penalty would occur is when many or all 

ports are simultaneously sending very short packets but this scenario should be 

unlikely to occur at any great frequency. 
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 PORTS 

1.4 SPACEWIRE PORTS 

 

 

The total number of ports is configurable from 2 to 31. Up to 31 can be external 

SpaceWire ports where each port is an instantiation of the SpaceWire codec core [5] 

provided in GRLIB [6]. The SpaceWire codec used for the SpaceWire ports provides 

many different output and input physical layer implementations. Among them are 

self-clocking reception, sampling, SDR or DDR sampling inputs or outputs and an 

Aeroflex SpW transceiver interface [6]. The different interfaces each have their strong 

features which makes them suitable for different technologies and link speeds. This 

makes the core versatile in respect of technology independence.  

1.5 AMBA AHB PORTS 

Up to 16 of the ports can be DMA engines with optional RMAP targets which transfer 

packets on an AMBA bus of a SpaceWire network. The AMBA AHB interfaces are 

based on the GRSPW2 [6]. The number of ports cover the complete range of what the 

standard allows. Through the use of one or more AHB interfaces connected to the 

router ports the router can easily be expanded with existing GRLIB cores. For 

example MIL-1553, CAN, PCI or Ethernet cores can for example be connected to the 

DMA engine providing a bridge to one or more of these interfaces with a minor 

 
Figure 1: SpaceWire router block diagram 
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amount of design work. In the same way the external parallel interface that is common 

in router components can be implemented.  

CONCLUSION 

The Aeroflex Gaisler SpaceWire router is a highly configurable and technology 

independent core. It supports all of the features mentioned in the SpaceWire standard 

with some additional features. Due to the technology independent design and reuse of 

existing IP it is easy to move the design between technologies and to reconfigure a 

design. Due to its connection with the GRLIB IP library it can also be expanded with 

bridges to a wide variety of on-board buses. 
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ABSTRACT 

Designed for use in space applications, SpaceWire offers many advantages over other 

comparable communications technologies.  It requires relatively simple circuitry to 

implement, offers low power consumption, and supports high link speeds.  It has 

rapidly gained acceptance and has been successfully employed in support of a wide 

variety of missions. 

Since SpaceWire was standardized in 2003, it has been supplemented by several 

higher-level protocols.   Standards were recently published which specify two such 

protocols: the Remote Memory Access Protocol (RMAP) and the Consultative 

Committee for Space Data Systems (CCSDS) Packet Transfer Protocol (PTP).  With 

anticipated introduction of a standard for SpaceWire-RT (SpaceWire Reliable 

Timely), mechanisms are introduced for SpaceWire to provide for timely delivery of 

information with Quality of Service (QoS) guarantees.   A new standard, known as 

SpaceFibre, which is derived from SpaceWire and supports even higher transfer 

speeds is currently in development. 

This paper explores the evolution of SpaceWire over time.   It compares and contrasts 

SpaceWire with other high-speed technologies such as Asynchronous Transfer Mode 

(ATM), Switched Ethernet, Peripheral Component Interconnect (PCI) and Rapid I/O 

and discusses the trade-off between design complexity and performance. 

1 INTRODUCTION 

SpaceWire is a simple, low-power, high-speed networking technology derived 

originally from the IEEE 1355 standard [1].  It has rapidly gained widespread 

acceptance for use in onboard spacecraft communication systems because it provides 

many advantages and is easy to implement in radiation-tolerant programmable logic 

devices.  The SpaceWire standard replaced the IEEE 1355 physical layer with low-

voltage differential signaling (LVDS) which is more suitable for the harsh space 

environment [2].  It uses point-to-point links to connect nodes rather than a shared bus 

and provides much flexibility for incorporating redundancy.  SpaceWire has relatively 

low memory requirements because it uses a wormhole routing technique in which a 

packet received on an input of a switch begins retransmission on an output before it is 

completely received. 
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Since SpaceWire was first published as a standard by the European Cooperation for 

Space Standardization (ECSS) in January 2003 [3], it has evolved and several new 

standards based on SpaceWire have emerged.  In July 2008, the SpaceWire standard 

was republished but no changes were made to the technical content [4].  In February 

2010, ECSS published a set of supplementary standards including “Space 

engineering: SpaceWire protocol identification” [5], “Space engineering: SpaceWire – 

Remote memory access protocol” [6], and “Space engineering: SpaceWire – CCSDS 

packet transfer protocol” [7].   In addition to these published standards, a number of 

proposed draft standards are under development.  These draft standards include 

SpaceWire-RT, which extends SpaceWire to include Quality of Service (QoS) 

guarantees [9], and SpaceWire-PnP (Plug-and-Play), which provides support for 

device discovery, network management, and device configuration services.  As 

SpaceWire has evolved, it has developed capabilities similar to many new and 

established network protocols. 

2 COMPARISONS TO OTHER PROTOCOLS 

2.1 ASYNCHRONOUS TRANSFER MODE 

Asynchronous Transfer Mode (ATM) is a networking technology originally designed 

for efficient transfer of voice, video, and data that was standardized by the 

International Telecommunication Union Telecommunication Standardization Sector 

(ITU-T) [8].  ATM uses a connection-oriented model in which a virtual circuit is 

established between endpoints.  In order to support QoS guarantees, ATM switches 

fixed-size transfer units, called cells, which provide constant transmission delays and 

guaranteed capacity. 

In contrast to the fixed-size cell used by ATM, SpaceWire uses variable-size transfer 

units, called packets.  The SpaceWire standard does not restrict the maximum size of 

a transfer unit (an approach inherited from IEEE 1355 [1]).  Consequently, long 

packets can cause delay problems in a SpaceWire network as they can block links in 

their path.  Although this can be a serious issue, the size of transfer units is often 

limited in practice by higher-level protocols. 

SpaceWire-RT (SpaceWire Reliable Timely) has been proposed as a higher-layer 

protocol for SpaceWire to provide a suitable solution where QoS guarantees are 

needed [9].  SpaceWire-RT supports a scheduled system by segmenting SpaceWire 

packets into maximum size transfer units, called DPs.  DPs are scheduled using fixed-

time slots, similar to the multiplexing of cells in ATM.  SpaceWire-RT, also like 

ATM, requires resource reservation in order to establish a timely path through the 

network.  

2.2 ETHERNET 

Ethernet is the ubiquitous, asynchronous, packet-switched network technology which 

dominates the Internet today.   Ethernet uses variable-size packets called frames.  

Similar to SpaceWire-RT, Ethernet restricts transfer units to a maximum size.  Early 

Ethernet implementations used a scheme known as carrier sense multiple access with 

collision detection (CSMA/CD) to share a common communications channel.  Under 

this scheme, if two senders transmit simultaneously causing a collision, both senders 

would terminate transmission, delay for a brief random time and then attempt to 
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transmit again.  Although this limits throughput, it is simple to implement.  Most 

modern Ethernet implementations are switched.  With this approach, Ethernet 

switches temporarily buffer frames and delay transmission in order to avoid 

collisions. 

Perhaps one reason for Ethernet’s immense popularity is that it integrates well with 

the Internet Protocol (IP).  Ethernet conveniently provides support for a link-layer 

broadcast mechanism and includes network unique source/destination addresses in 

each frame.  This greatly simplifies configuration by providing a mapping to directly 

support an Address Resolution Protocol (ARP). 

SpaceWire too can be characterized as an asynchronous, packet-switched network.  

However, in contrast to Ethernet, SpaceWire does not provide provisions for a link-

layer broadcast mechanism and does not inherently provide network unique addresses 

within a packet.  Fortunately, these features can be added using higher-level protocols 

[10].  In this way, SpaceWire can effectively be integrated with the Internet Protocol. 

2.3 PERIPHERAL COMPONENT INTERCONNECT 

Peripheral Component Interconnect (PCI) refers to a series of related standards.   PCI 

was originally introduced by the Intel Corporation for use in attaching hardware 

devices in a computer system.   An industry organization, known as the PCI Special 

Interest Group (PCI-SIG), was formed in 1992 and released the PCI v2.0 standard in 

April 1993 [11].  The standard defined a 5-Volt, 33-MHz, 32-bit parallel architecture 

with throughput of 133 MB/s (>1Gbps). 

The latest standard in the PCI family is PCI Express.  Unlike previous PCI standards 

which were based on a shared parallel bus, PCI Express shifted to a serial point-to-

point architecture in order to avoid issues with clock skew at high clock rates.  PCI 

Express has started to displace conventional PCI in modern day Personal Computers 

(PCs). 

In the PCI family, PCI Express is the most similar in architecture to SpaceWire.   PCI 

Express is typically implemented on a backplane.  Backplane implementations of 

SpaceWire have been proposed and research has been conducted to evaluate 

connectors suitable for the harsh environments of space [12]. 

2.4 RAPIDIO 

RapidIO is a high-speed, packet-switched interconnect technology that was designed 

for use in integrating components on a circuit board.  The technology was originally 

developed as a collaborative partnership between Motorola and Mercury Computer 

Systems, Inc. with a 1.0 specification released in late 1999 [13].  In 2000, the RapidIO 

Trade Association was formed to direct development and encourage adoption of the 

technology.  RapidIO exists in Serial and Parallel versions.  Although Serial RapidIO 

achieves higher speeds than SpaceWire, it has not been qualified for use in space 

applications. 

A new standard, known as SpaceFibre, which is derived from SpaceWire and supports 

even higher transfer speeds is currently in development [14].  SpaceFibre shares some 

common characteristics with Serial RapidIO such as the use of 8B/10B encoding to 
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transmit the clock along with the data signal.  SpaceFibre requirements include the 

target or reaching link speeds of up to 2.5 Mbps which is comparable to RapidIO. 

3 SUMMARY AND CONCLUSIONS 

Table 1. Summary of Network Protocols 

 SpaceWire ATM Ethernet PCI RapidIO 

Standardize
d 

2003 1988 1982 1993 (v2.0) 2001 (1.1) 

Standards 
Body 

ECSS ITU-T IEEE PCI-SIG RapidIO TA 

Created By ESA/ESTEC ITU, ATM Forum, 
et. al. 

Xerox Intel Motorola and 
Mercury 

Computer 
Related 

Standards 
RMAP, PTP, 

SpaceWire-RT, 
SpaceWire-PnP, 

SpaceFibre 

SONET/SDH 10/100/1000BAS
ET, 

1Gb and 10Gb 
varieties 

PCI v2.1, v2.2, 
v2.3, PMC, 
PCI-X, PCIe 

RapidIO 1.1, 1.2, 
1.3, 2.0, 2.1 

Capacity 2 – 400 Mbps 155Mbps (OC-3), 
10Gbps (OC-192) 

10Mbps, 
100Mbps 

1Gbps, 10Gbps 

1Gbps, 2Gbps, 
4Gbps 

1Gbps (x1) – 
10Gbps (x4) 

Type serial 
point-to-point 

serial 
point-to-point 

shared-bus, serial 
point-to-point 

parallel, 
32 or 64 bits 

serial 
point-to-point 

Transfer 
Unit 

packet cell frame bus transactions packet 

 

SpaceWire has proven to be a simple, yet versatile networking technology.  The 

creation of integrated higher-level protocols for SpaceWire has made it viable for a 

variety of practical applications. 
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ABSTRACT   

The report deals with the special features and results of designing LVDS transmitters 

– receivers, manufactured by the CMOS 0.25/0.18/0.13 µm technologies for series 

data transmission at a speed up to 1 Gbit/s. The prospects of raising the transmission 

speed up to 1.5-2 Gbit/s are considered.  

1  INTRODUCTION 

LVDS (low-voltage differential signaling) – is a topical format of data presentation in 

high-speed communication interfaces, implemented in the  Space Wire standard [1]. 

The peculiarity of the standard consists in the communication line’s low voltage 

differential signal, being a high frequency bit flow. The problem of raising the LVDS 

transmission speed, while retaining a relatively low power consumption, is one of the 

most topical ones in practice [2,3]. 

The initial requirements predetermine the presence of a high-voltage periphery in the 

body of the transmitter or receiver – some parts of CMOS circuitry with the 0.35 µm 

design rules and 3.3 V supply voltage. The basic circuit elements are fed by standard 

supply voltages of 2.5/1.8/1.3 V (in accordance with the 0.25/0.18/0.13 µm 

technologies). 

High-voltage parts (0.35  µm) constitute a considerable fraction of the whole 

transmitter/receiver design and essentially influence the speed characteristics of 

interface. For the sake of unification they are implemented in the form of structure-

layout cores and are compatible with each of the chosen technologies  0.25/0.18/0.13 

µm.  

High-speed voltage translators with small signal delay have been designed for 

interfaces with high-voltage elements. 
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The Space Wire standard determines the high rate of switching the differential signal 

levels – of exchanging the «0»-s и «1»-s in the sequence of bits transmitted. 

Nevertheless, the developed circuits can function at slow bit rates also (for instance, at 

10 Mbit/s) – down to the transmission of a constant differential signal  «0» or «1». 

An additional (service) function of the LVDS receiver is the detection of breakage in 

the communication line with the LVDS transmitter. 

All the receivers/transmitters design can switch into the mode of reduced power 

consumption. 

2 LVDS TRANSMITTERS 

The transmitter converts the input series of bits, presented by the “0” and “1” logical 

levels, into the differential output LVDS signal. 

The initial data and control signal level (permission of operation, transfer to the mode 

of reduced power consumption) is carried out by logical elements, being fraction of 

the low-voltage part of the circuit. The conversion into differential form and 

translation of voltage logic levels, necessary thereby, are carried out by high-voltage 

analog elements. 

Fig. 1 shows the principle of shaping the Up, Un differential signal in communication 

line. For simplicity the shaping circuit elements are presented as macromodels. 

The transmitters developed are intended for communication systems with 

transmission speeds up to 600 Mbit/s. This parameter is maintained for capacitive 

loads up to 5 pF at each of the two line busses Up, Un. Reducing the capacitance 

down to 1.5 pF permits to raise the transmission rate up to 2 Gbit/s (fig. 2).  

 

Fig. 1. Circuit, shaping the LVDS differential signal in transmitter 
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Fig. 2. Time diagrams of transmitter (of the circuit, shaping the LVDS signal) at a 

speed of 2 Gbit/s 
 

3 LVDS RECEIVERS 

Such a receiver converts the differential LVDS signal (Up, Un) in a digital series of 

bits (OUT).  

The basic element configuration of the receiver circuit (macro) is shown in fig. 3. 

Time diagram of receiver is shown in fig. 4. 

An effective way of extending the high-frequency band of receiver, bound with 

shaping the Uinv(t) voltage, consists in using a ring structure of current mirrors in the 

basic circuit of fig. 3 (that was studied at simulation). The switching process acquires 

threat a regenerative character, what allows us to determine distinctly the temporal 

limits of bits. The result becomes obvious, when comparing fig. 4b to fig. 4a (at 

similar characteristics of the signal transmitted).  The use of a ring of current mirrors 

eliminates the necessity of an automatic adjustment circuit, while the rate of data 

reception may be raised to 2.5-3 Gbit/s. 

 

Fig. 3. Circuit diagram of converting the differential LVDS signal into a digital one 
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a)      b) 

Fig. 4. Time diagrams of receiver at an initial structure (a)  

and at a ring structure of current mirrors (b) 

 

4 EXPERIMENTAL RESULTS 

Three versions of the LVDS transmitters-receivers have been manufactured with 

CMOS – 0.25/0.18/0.13 µm technologies. The experimental studies confirmed their 

characteristics, as complying with the simulation results and requirements of 

standards (including the value of current consumption in the modes of operation and 

of reduced power consumption) for transmission speeds up to 1 Gbit/s.  

5 CONCLUSION 

The peculiarities of the LVDS interface have been considered, as a building block of 

the SpaceWire standard.  

The features of designing LVDS transmitters-receivers have been described in detail. 

The basic attention was paid to provide a high speed of those units, allowing to 

achieve transmission speeds of 1 Gbit/s and higher, which redundantly satisfy the 

needs of SpaceWire applications. In the course of designing the LVDS transmitters-

receivers there was applied an original technique, invariant relative to the specific 

version of the submicron CMOS-technology used (with rules 0.25/0.18/0.13 µm).  
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ABSTRACT 

ASTRO-H is an X-ray observatory satellite exploring in the universe to be launched 

in 2014. The data acquisition system of this mission will be constructed based on the 

SpaceWire network. One of the most important issues is to evaluate the time 

assignment system on the SpaceWire network. In this paper, detail descriptions of 

timing system of ASTRO-H are shown, as well as verification experiments performed 

with SpaceWire modules. Based on the obtained results, the timing accuracy of the 

ASTRO-H system is estimated to be a few microseconds, which is well below the 

requirement. 

1 INTRODUCTION 

1.1 THE ASTRO-H MISSION 

ASTRO-H [1] is the 6
th

 satellite in Japanese X-ray observatory series to be launched 

in 2014. It is a Japan-US mission leaded by JAXA and NASA, and collaborated with 
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ESA. The data acquisition system of ASTRO-H is required to have high timing 

capability with timing resolution of about 10 µs and accuracy of about 30 µs in order 

to archive the scientific goals of the mission, for example, high energy physics from 

observations of astrophysical objects showing rapid variability like pulsars, black 

holes etc. 

1.2 DATA ACQUISITION SYSTEM OF THE SPACEWIRE NETWORK  IN ASTRO-H 

The command and telemetry communication onboard ASTRO-H will be constructed 

on the SpaceWire network. Figure 1 shows the current design of the network onboard 

ASTRO-H. The boxes in the figure except for that denote as GPSR (GPS Reciever) 

represent the network nodes having SpaceWire interfaces. The messages transmitted 

between nodes, "Space Packets", are sent via the RMAP protocol. To guarantee the 

quality of service (QoS) of the data transfer, communication time is divided into 64 

time slots by highly prioritized 64 Hz time-codes. 

SpWRUN1 UN2 UN4

GPSR

1 pps / 1 Mpps

UN3

SMU

SpWR SpWR

UN5

Science-Instrument Network

SpaceWire

(To Each Sensors / non-SpW)

(To the other

SpW network)

 

Figure- 1 : SpaceWire-based data acquisition system onboard ASTRO-H. GPSR, SpWR and UNs 

mean a GPS Reciever, SpaceWire routers and User Nodes (see text), respectively. 

2 DESIGN OF THE TIMING SYSTEM IN THE ASTRO-H NETWORK 

2.1 DISTRIBUTION OF THE SPACECRAFT TIME 

Time when the space packet is generated on the spacecraft is to be assigned as a UTC 

(Universal Time, Calculated) value on ground. Onboard the spacecraft, the data-

acquisition system delivers a monotonously increasing time counter called "TI". A 

node performed as a “Time Master” [2] distributes TIs to all the nodes, and all the 

components onboard share the single time source, TI. On the ground station, UTC 

from caesium clocks and the satellite TI monitored via real time telemetry are 

compared to produce a conversion table. This method is previously used in scientific 

satellites of JAXA, like the Suzaku satellite [3]. 

In the ASTRO-H network, the top node called Satellite Management Unit (SMU) has 

the function of “Time Master”, where TIs are generated from 1 pps and 1 Mpps 

clocks of GPSR. Then, the Time Master distributes the TI values to the other nodes. 

We call these slave nodes as “User Nodes”. In order to distribute TIs properly, the TI 

is divided into two parts: one is 32-bit “TIME DATA” above a second, which is 

distrubuted via “RMAP write”, and the other is 6-bit Time-Code for sub-second 

distributed by the time-code manner [2]. With this method, the accurate timing of the 

leading edge of the time clock of TI is notified by the Time-Code, and thus, the jitters 

in distributing the Time-Code [4] will limit the timing accuracy of this system. 
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2.2 TIME ASSIGNMENT OF X-RAY EVENTS 

ASTRO-H carries X-ray sensors as the User Nodes. They detect X-ray photons 

coming from celestial objects randomly. The arrival time is required to be assigned 

event by event with the timing accuracy of 10 µs. Therefore we need finer time 

counters at the User Nodes for the time assignments of X-ray events. We call them 

"LocalTime". Although LocalTime can be simply realized by a phase locked loop to 

the TI counter, we implement LocalTime with free-run clocks to reduce required 

resource in each User Node. The information of each X-ray event carries LocalTime 

value, and such event data are gathered into a space packet with a corresponding TI 

value. To assign time of each event, we should know a mapping table between TI and 

LocalTime. This mapping table is acquired periodically by a constant time interval 

(hereafter, Sample Period), which is summarized into the House-Keeping space 

packet. In order to realize this system with a sufficient accuracy, we should determine 

the Sample Period referring the stability of the quartz oscillators onboard the 

spacecraft under the expected temperature circumstances. 

3 VERIFICATION OF THE TIMING SYSTEM 

3.1 AIMS OF THE VERIFICATION EXPERIMENTS 

The aim of the experiment is to examine the concept of the time assignment system 

described in section 2. As already mentioned in section 2.2 and 2.3, we should check 

the following two items with the actual hardware: (i) jitters of Time-Codes and (ii) 

stability of LocalTimes. 

3.2 SET UP AND ANALYSIS 

The configuration of the experiment is shown in figures 2 and 3. The link rate 

between Time Master and User Node was set to be 100 MHz without any other data 

transfer; i.e, it was in communication of NULL (8 bits). In experiment (i), time lags 

between Time-Code “ticks” of Time Master and User Node were taken by a Time-to-

Analogue Converter with and without the router hop. In experiment (ii), the mapping 

table of TI and LocalTime was recorded on the User Node into its own SDRAM every 

second, and was read out via a CPU node named SpaceCube [5]. The User Node was 

set into a thermostat bath under the temperature of 10 ±5, ±10, or ±20 ºC with no 

router between the two nodes. Then, we calculated the interpolation function from 

data sampled every Sample Period, and we got the residuals (hereafter “Timing 

errors”) by comparison with the function and the original fine data. 

Time Master
(SpW Digital I/O board; 

Shimafuji)

User Node
(SpW Digital I/O board; 

Shimafuji)

GPSR

SpW (100 MHz)

SpW

Router

Time-Code

TAC

GPS clock

(1 pps / 10 MHz)

no hop

1 hop

tick tick

ADC

 

Figure- 2 : Set up of the experiment (i). 

Time Master
(SpW Digital I/O board; 

Shimafuji)

User Node
(SpW Digital I/O board; 

Shimafuji)

GPSR

SpW (100 MHz)

Time-Code

CPU
(SpaceCube;

Shimafuji) SDRAM read

(RMAP)

GPS clock

(1 pps / 10 MHz) thermostat bath

 

Figure- 3: Set up of the experiment (ii).
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3.3 RESULTS AND DISCUSSIONS 

Figure 4 shows the results of the experiment (i); histograms of time delays of Time-

Codes between Time Master and User Node. Full widths of the distributions are 90 

and 160 ns without and with the router between the two nodes, respectively. These 

values can be interpreted as time jitters of 70 or 140 ns by one or two routers, 

respectively. The rest 20 ns is due to other unknown origin. In other words, N hops 

causes 70 × N ns jitter. In the ASTRO-H configuration, the minimum link rate is to be 

20 MHz so that jitters of Time-Codes should be 70 ns × (100 MHz / 20 MHz) = 350 

ns at 1 hop. In the ASTRO-H network, 4 or 5 hops are expected (figure 1), and thus 

the total jitters of Time-Codes are expected to be 1.4-1.8 µs. This value is well below 

the timing accuracy required. 

Figure 5 shows the results of the experiment (ii); Timing errors as a function of 

Sample Periods. Even if the temperature varies ±20 ºC, timing distortion by sampling 

the mapping table is less than the requirement. 

No hop 1 hop

 

Figure- 4: Histograms of jitters of Time-Codes. 
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Figure- 5: Timing errors an a function of 

Sample period, under temperature variety of ±5, 

10, 20 K (red, blue and green, respectively). 

In summary, the method proposed by us fulfils required time performance to the 

ASTRO-H satellite. 
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ABSTRACT 

For the requirement of building a highly reliable communication system, SpaceWire 

was applied in Space Solar Telescope (SST) project completed by National 

Astronomical Observatories, Chinese Academic of Sciences. This paper is based on 

part of work on SST project. In SpaceWire standard, Data-Strobe (DS) encoding was 

an encoding scheme for transmitting data in digital circuits. This study aimed to verify 

that the DS encoder circuit, which was developed for SST project, faithfully 

implemented the specification in SpaceWire standard. Equivalence checking was 

applied between the specification and implementation. With the aid of HOL tool, this 
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equivalence checking was carried out in a formal verification method, theorem 

proving. According to the requirements of the standard, a primitive recursive function 

was defined using Meta Language (ML) in order to specify the circuit. Then the 

components implemented in VHDL code were modeled with predicates. The result 

showed that the implementation is equivalent to the specification. It suggested that 

this DS encoder circuit implemented on FPGA can be applied reliably in the SST 

project.  

1 INTRODUCTION 

With the development of technology and science, the density of the circuits increases 

quickly. The extensive applications of the circuits are found in transportation systems, 

medical applications, defense systems, and so on, nearly all aspects. It is well known 

that the cost of a failure is unacceptably high [3], especially in aerospace safety 

domain. Any subtle error in the design might cause unexpected trouble under a partic-

ular set of conditions. It may mean the loss of life or serious impairment for many hu-

man beings, the disastrous consequences. Thus, to verify the correctness of the circuit 

becomes imperative.  

Generally, designers try to ensure correctness through simulation and testing. 

However, it is impossible to test or simulate all the cases for large, complex systems. 

Furthermore, simulation and testing inputs are usually designed to detect only certain 

well-defined types of faults. Some corner cases might be ignored during the process 

of design, simulation and testing. And exhaustive simulation and testing are no longer 

possible because of the increasing complexity of the circuit. [3] 

Formal methods have the capability of conducting precise system analysis and 

overcome the limitation described above. It is a technology to construct the system 

based on mathematical model formally. Theorem proving is one of the most 

commonly used formal methods. It allows to mathematically reason about system 

properties by representing the behavior of a system in higher-order logic in a general 

model. In this way, the specification and implementation are expressed as the general 

mathematical model so that all the cases are covered when they are proved to be 

equivalent.  

In SST project, SpaceWire link addresses the handling of payload data and control 

information on boarding a spacecraft. DS encoder is the critical circuit part in 

SpaceWire standard for high speed data link. To verify that the design of this circuit is 

implemented reliably, theorem proving is applied. In chapter 2, the method is 

described in details. Then result is shown in chapter 3. Finally, it comes to the 

conclusion and presents the future work. 

2 METHOD 

For the purpose of verification, both the specification based on SpaceWire standard 

and the implementation based on the hardware are modeled abstractly. These two 
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models are called DS Encoding Specification and DS Encoding Implementation 

separately. Both of the models are defined formally utilizing ML (Meta Language) in 

higher-order-logic. The latter comes from the VHDL code and the gates are obtained 

based on their Boolean functionality. By applying the rules for reasoning in 

higher-order-logic, equivalence checking was applied between these two models.  

2.1 DS ENCODING SPECIFICATION 

In SpaceWire standard, Data-Strobe (DS) encoding is specified as the coding scheme 

which encodes the transmission clock with the data into Data and Strobe so that the 

clock can be recovered simply by implementing an exclusive OR operation on the 

Data and Strobe signals. It is illustrated in Figure 1. As it shows, Data are transmitted 

directly and the state of the Strobe signal changes whenever the data alters one data 

bit interval to the next. [1] 

D

Data        0          1          0          0          0          1           1          0          1          1 

S
 

Figure 1 Data-Strobe (DS) Encoding 

 

The major feature of DS encoding is that the Data are transmitted directly and the 

Strobe signal shall vary state whenever the Data does not change from one bit to the 

next. In order to demonstrate the signals in a general expression, in following 

definition, t denotes clock, and X t denotes the signal level at t time. Obviously, X 

(t+1) means the signal at t+1 time. In the process of reasoning, if the signal is “1”, it 

equals to True (T); if it is “0”, it equals to False (F). This feature can be modeled in 

abstract as the following properties. 

Property 1:  

If reset is T at time t, then the value out at dataout and strobe at time t are both F, i.e. 

∀t. reset t ⇒ (dataout t=F)/\(strobe t=F)                              (1) 

where∀t means for all t; ⇒ means implication.  

As described in SpaceWire standard，the data values are transmitted directly, the 

relation between data and strobe signal presents the fact that the output of the data 

signal should be 3 clock cycles later than the input. Therefore, this can be expressed 

in property 2: 

Property 2:  

If reset is T at time t+1 or t+2 or t+3, then the value output on dataout at time t+3 is F, 
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otherwise it is equal to the value input at time t on datain, i.e. 

∀t. dataout (t+3) = if reset (t+1) \/ reset (t+2) \/ reset (t+3) then F else datain t  (2) 

Property 3:  

If reset is T at time t+1, then the value output at strobe at time t+1 is F, otherwise, if 

dataout is equal at time t and time t+1, the value output at strobe at time t+1 is equal 

to the negation of the value at time t on itself otherwise the value at time t on itself, 

i.e. 

∀t. strobe (t+1)= 
if reset (t+1) then F else 

          (if dataout t=dataout (t+1) then ¬(strobe t) else strobe t)           (3) 

where ¬ means negation. 

To state the specification property 3 in an intuitive logic expression, Xor operation is 

defined. 

Definition 1:  ∀a b. Xor a b = ¬a /\ b \/ a /\ ¬b  

Therefore, (3) can be expressed using Xor as follows: 

∀t. strobe (t+1)= 
if reset (t+1) then F else 

            Xor (strobe t) ¬Xor (dataout (t+1)) (dataout t))               (4) 

2.2 DS ENCODING IMPLEMENTATION 

The SpaceWire Encoding Circuit is designed with VHDL code. Only the process 

related to encoding is considered. For example, instead of TX_ShiftReg, Datain signal 

indicates the data transmitted. The simplified code is given in Figure 2: 

 

 
IF (Clock'EVENT AND Clock = '1') THEN 
      IF (Reset = '1') THEN 
         D1       <= '0'; 
         D2       <= '0'; 
         DataOut  <= '0'; 
         St        <= '1'; 
         Strobe    <= '0';   
      ELSE         
         D1       <= Datain; 
         D2       <= D1; 
         DataOut   <= D2;  
         St        <= St XOR NOT (D1 XOR D2); 
         Strobe     <= St;  
       END IF; 
END IF; 
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Figure 2 Simplified code based on VHDL code 

The approach to translating VHDL code into logic expression is not so straight. In 

addition, the proofs depend on the proper modeling and analysis of complex timing 

behavior. The tactics for modeling VHDL code in abstract have never been found in 

any referable paper or book. The method to model the VHDL code in behavior level 

is based on functions. Each function or any operation is modeled with predicates. All 

predicates are joined together with AND operator as shown in Figure 3. In such a way, 

the entire circuit can be modeled. 

The predicate ONE is that for all times t the value of out is T.[2] 

Definition 2: ∀out. ONE out =∀t. out t = T  

As known, has constructs to handle the parallel behavior designs, the value of the 

signal variable in the right-hand-side of the assignment statement is the one at the 

preceding time. For the purpose of expressing this behavior, REG is defined. The 

value of the output at time t+1 is that of the input at the previous time t, except at time 

0. Since Time 0 refers to the exact time point that the device is power on, REG 

outputs F. [2] 

Definition 3: ∀inp out. REG (inp,out) =∀t. out t = if t = 0 then F else inp (t - 1)  

Similarly, `IF…THEN…ELSE…` can be modeled with predicate MUX. The input sw 

selects which of the other two inputs are to be connected to the output out.  

Definition 4: ∀sw in1 in2 out. MUX (sw,in1,in2,out) = 
∀t. out t = if sw t then in1 t else in2 t 

The NOT gate is used to denote the situation that the value of out is always the 

negation of the value of inp.  

Definition 5:∀inp out. NOT (inp,out) =∀t. out t = ¬inp t  

Xor operation is modeled with a predicate XORING. This predicate states the case 

that the value of out is always in1 XOR in2 having no delay. 

Definition 6:∀in1 in2 out. XORING (in1,in2,out) =∀t. out t = Xor (in1 t) (in2 t)  
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Figure 3   the connected predicates

Then reset, datain, dataout, strobe, d1, d2 and st represent Reset, Datain, Dataout, 
Strobe, D1 and D2 in VHDL code, respectively. For the convenience of expression, l1, 
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l2, l3, l4, l5, l6, l7, l8 and l9 are assumed as the temporary signal variables. The 

connected predicates are illustrated in Figure 3.  

3 RESULT 

Although the DS encoding circuit is small, it is worth doing verification on it because 

of its widely applications (The DS encoding scheme is also used in the IEEE Standard 

1355--1995[4] and IEEE Standard 1394--1995 (Firewire) [5]). By applying the 

corresponding tactics and tacticals in HOL tool, the result showed the goal is proved, 

which suggested that the implementation of this circuit in FPGA hardware can imply 

the specification of this encoding scheme. So the design of the circuit can implement 

the behavior specified in the standard.  

On the other hand, the efforts of the interactive verification work in a system might be 

huge. Our work compromises the merits of formal verification, simulation and testing. 

It suggests that a feasible scheme for verifying a safety system is applying theorem 

proving method on the critical and model checking method on the other parts. 

4 CONCLUSION AND FUTURE WORK 

By means of theorem proving with the aid of HOL tool, SpaceWire encoding circuit 

was verified and the result shows that the implementation is equivalent to the 

specification. Describing the behavior of the circuit with a general abstract model, it 

overcomes the limitation of simulation and testing. Furthermore, a new approach is 

proposed and proved to be usable in our work for modeling the VHDL code in 

abstract. More important, formal verification is expected be introduced into the 

process of design, since it is more helpful to ensure the design at the early stage of the 

product. 

The successful verification on this small circuit is the first step of our investigation on 

applying the formal methods on the safety system. In the future, to verify some more 

circuits designed based on SpaceWire standard is our main aim so as to providing 

strong support to the correctness of our design in SST project.   

Another plan for our future research is that more efforts will be done on investigating 

a compromise scheme for verifying the whole design applying formal methods in 

order to ensure the design in a critical security completed system.  
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ABSTRACT 
The SpaceWire IP core developed by NASA/Goddard Space Flight Center has been 
incorporated into the JPL-Software Defined Radio (SDR) being prepared for flight on 
the International Space Station as part of the CoNNeCT project.  The JPL-SDR 
provides reprogrammable capability for the SPARC CPU and for the Xilinx FPGAs to 
implement present and future communications waveforms and networking functions. 
The implementation follows the new NASA Space Telecommunications Radio 
System Architecture Standard, which provides for abstracted interfaces among the 
various software and hardware components within the radio. The STRS architecture 
defines an Operating Environment (STRS OE), which provides basic platform 
capabilities and abstracted views of the functional infrastructure of the 
hardware/software platform. The JPL STRS OE provides SpaceWire services to user 
applications (i.e. SDR waveforms) implemented within the FPGA, reducing the need 
for a waveform developer to be aware of the details of SpaceWire implementation: it 
is just another data source or sink.  The JPL implementation provides an RTEMS 
device driver to manage the SpaceWire cores and also exposes an interface to 
software running in the SPARC as well as to the more traditional 
modulator/demodulator functions implemented in the FPGA. 
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ABSTRACT 
SpaceWire is being used for time distribution and synchronization among the 3 
different software defined radios (SDRs) and the avionics payload on the SCaN 
Testbed which is being produced by the CoNNeCT project for installation on the 
International Space Station in 2011. The SCaN Testbed will provide a platform for 
experiments on communication, networking and navigation using SDRs in space. 
SpaceWire timecodes will provide the means to transfer synchronization signals from 
waveforms (applications) implemented in one radio to another radio or to the 
controlling avionics system. Other messages needed for synchronization (e.g. “at the 
tone, the time is”) will be carried either by the SpaceWire links or by MIL-STD-
1553B command, control and telemetry interfaces.  One of the radios, the JPL-SDR, 
provides abstracted synchronization interfaces to waveform components instantiated 
in its FPGAs, such as the code epoch or 1pps messages from a GPS, or other 
synchronization derived from S-band communications signals. Ground test interfaces 
provide sources and sinks for messages and time codes to allow calibration and 
testing. 
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ABSTRACT 

In a SpaceWire network, to connect equipments together, a SpaceWire router uses the 

wormhole routing to deliver packets. However, in the wormhole routing, there 

inherently exists the braking-problem that increases the average non-blocking latency.  

In this paper, we propose an elastic flow control mechanism to solve this problem.  In 

addition, we propose a novel parallel switch architecture with pipelining to improve 

the transmission speed and switching efficiency, and optimize its FPGAs 

implementation. We implement our technique and test it in Xilinx FPGAs. The results 

show that on average the non-blocking latency can be reduced to 245ns at 200MHz. 

By using our elastic flow control, a long physical connection between two nodes can 

be established without reducing the bandwidth utilization. With our pipelined parallel 

switch architecture, the transmission speed can be enhanced to over 300Mbps and the 

circuit scale can be reduced 50% compared with the original design in FPGAs 

implementation. 

1 WORMHOLE ROUTING 

Wormhole routing is an effective solution for packet routing [1][2]. Each packet 
contains a header which holds the destination node address. As soon as the header for a 
packet is received, the router determines the output port to route the packet to by 
checking the destination address. If the requested output port is free, the packet is 
routed immediately to that output port. That output port is now marked as busy until 
the last character of the packet has passed through the router – indicated by the end of 
packet marker being detected by the router. Wormhole routing only cuts down on the 
amount of buffering used within each router and the delay for packets deliver. 
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Compared to a store and forward technique, where an entire packet is first received and 
stored before it is sent out of the router, NoC (Network on Chip) [32]

 
can be realized. 

And delay of a single packet lowerT can be described as: 

 chpsdchflower BLDBLT /)/(  (1) 

fL  is the length of each flit, sdD  is the distance between source node and destination 

node, chB is the bandwidth of the channel, and pL  is the length of packet. If pf LL , 

the influence from sdD  to lowerT  can be ignored. 

Wormhole routing [1] is illustrated in Figure 1 which shows a packet being sent from 
one node to another through a routing switch (router). The header of the packet is 
marked as black, while the rest of the packet is marked as grey. As soon as the router 
receives the header, it checks the requested output port. If the output port is free, then 
the router makes a connection between the input port and the output port. The packet 
then flows through the router. When the end of packet (EOP or EEP) marker is 
received by the switch, the router terminates the connection and frees the output port 
for the next packet, which can come from any input ports. 

 

Figure 1. Wormhole Routing 

Using of blocking flow control mechanism in wormhole routing, there is an inherent 
braking-problem [4][5]. When a header flip reaches the router, the flip has to wait until 

next channel is free. Transmission time of packet from header flip to end flip is bT , and 

it can be expressed as: 

 sARBADb TMTTT      (2) 

ADT  is coding time of address coder; ARBT  is arbiter time, and ST  is blocking signal 

transmission time in router. Because all the data flips are transmitted with pipelining 

mode, clocking time cT  need to be greater than bT (see Equation 3). Otherwise, packet-

loss would happen. 

 sARBADc TMTTT  (3) 

Latency built up in router is with millisecond. A signal transmission can be finished 

with nanosecond, and clocking time is in millisecond. From Equation 3 we can see 
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that, working-frequency is limited by the braking-problem, and working-frequency is 

one of the key factors to improve the transmission rate. 

2 ELASTIC FLOW CONTROL 

Based on analysis above, an elastic buffer is applied to solve the brake problem in 
wormhole routing. Elastic flow control uses flip as the basic unit. In this paper, we 
propose an elastic flow control mechanism to illustrate the idea of design elastic buffer. 

 

Figure 2. Structure of Elastic Buffer 

As is shown in Figure 2, the capacity of buffer is C , the upper boundary is Bh, and the 

lower boundary is Bl. F is the number of bytes stored in a buffer, and 0F initially. 

While outgoing transmission rate is equal to incoming transmission rate, F maintains 

a fixed value. While outgoing transmission rate is lower than incoming transmission 

rate, the value of F will gradually increase. When it reaches the upper boundary, a 

flow control signal is built to notify the incoming node to stop transmission, and here 

remain hB  unused bytes in buffer for storing the incoming data in braking time. The 

braking distances are determined by hB . By increasing hB , braking distances can be 

prolonged. 

Accordingly, the setting of lB  is to prevent flow breaking while read-out from buffer. 

While the value of F reaches nether boundary, flow control signal can be revoked to 

notify incoming node continuing transmission. It needs time for low control signal to 

be revoked from incoming node, and with lB , it can prevent flow breaking when low 

control signal be revoked. Thus transmission would be more effective.  

By using elastic flow control, address coder time ADT  and arbiter time ARBT   do not 

need to be calculated, and delay can be reduced by paralleling data transmission and 
channel switch. The flow control signal is built and revoked at the same time, which is 

equal to blocking time BT . So cT  should be: 

                  sBc TTT                       (4) 

It is easy to build a flow control signal, which can be finished within several 

nanoseconds. Compare with Equation 3 and Equation 4, braking-problem can be 

solved with elastic flow control. Also, there can be a long physical connection 
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between two nodes without reducing the bandwidth utilization by hB  and lB  in 

synchronous mode. 

3 PARALLEL SWITCH ARCHITECTURE 

Normally, there are three steps for a packet passing from input port to output port in 

SpaceWire router:  

A. Reading header for the packet and sending the destination node address to routing 

table 

B. Finding destination node address in routing table and to decide the output port of 

the packet 

C. Sending the packet to the decided output port 

There is a read/write competition when more than two input ports sending packet to 

the same output port. This would trigger the arbitral mechanism in router. After 

arbitration, the input port with higher priority can send its packet. That is, only one 

input port can send packet at a certain time; others would sending packet sequentially 

by arbitral result. Transmission efficiency of router would be confined by this serial 

arbitration mode. 

We design a pipeline based SpaceWire router to improve the transmission efficiency. 

The objective is to design a pipeline based non-blocking parallel switch, as is shown 

in Figure 3. 

 

Figure 3. Illustration of Switch Matrix 

Circuit of packet header detection and packet reorganizing can be very complex with 

a large circuit scale in original SpaceWire router design. We propose a transaction 

processing pipeline for packet header detection and packet reorganizing, which can 

reduce the complexity of circuit design and power consumption, and improve the 

reliability of SpaceWire router. The architecture of parallel switch pipelining is 

illustrated in Figure 4. We realize this architecture with FPGAs, and experiment 
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results show that, by using transaction processing pipeline, the circuit scale can be 

reduced about 50% compare to original design. 

 

Figure 4. Architecture of Parallel Switch Pipelining 

As illustrated in Figure 4, this architecture composes of K  no-buffer crossbar 

switches and M  input sharing storage modules. There are V external interfaces for 

each input/output sharing storage module, which connects to all crossbar switches. 

There are M V  VOQs (Virtual Output Queue) in each input sharing storage module, 

which stores packets to different destination. V output queues in each output sharing 

storage module store packets wait be sent. In each arbitration cycle, input port picks 

up M queues from M V  VOQs randomly, and submits scheduling requests to 

switch. Switch services each queue by polling and feedbacks authority information to 

input port by scheduling result. The first packet of VOQs that appointed by authority 

information will pass switch to output queues, and it will be sent to external links after 

message reorganization. Push-reverse mechanism can be adopted to avoid overflow in 

output.  

In case of multi-input sending packets to one output, we adopt pipeline technology for 

multi-transmission by time-sharing operation. Also, routing table can copy to each 

input port, and there is no need for arbitral mechanism. While a packet arrives in input 

port, it decides the output port by finding in routing table by header of packet, and it 

will be sent the packet. While multi-input transmission, it would assign a time-token 

for each input port. Packet can be transmitted when time-token of this input port is 

enabled, and transmission is stopped once time-token is disabled. All incoming 

packets can follow this way. Assigning time-token can be controlled by routing 

algorithm. The basic idea is to assign time-token to each input port alternately by 

using pipeline, and routing algorithm can be optimized in some specific application. It 

Elastic Flow Control and Parallel Switch Design for SpaceWire Router

263



would improve transmission performance in SpaceWire network, and accessing for 

each input/output port can be achieved simultaneously. 

4 EXPERIMENTS 

We conduct experiments by building a platform with Xilinx FPGAs, which is shown 

in Figure 5. The platform consists of two routers, and each router is connected with 

several nodes. Each node includes the data source of video, image, audio, and 

instructions. Each router connects with a PCI node, which is used to connect the host 

PC. The host PC can observe and configure the router via PCI node. 

 

Figure 5. Illustration of Experiment Platform 

The experimental results show that on average the non-blocking latency can be 

reduced to 245ns at 200MHz. By using our elastic flow control, a long physical 

connection between two nodes can be established without reducing the bandwidth 

utilization. With our pipelined parallel switch architecture, the transmission speed can 

be enhanced to over 300Mbps and the circuit scale can be reduced 50% compared 

with the original design in FPGAs implementation. 

5 CONCLUSION 

In this paper, we solve the braking-problem by using elastic flow control mechanism. 

We proposed novel parallel switch architecture with pipelining to improve the 

transmission speed and switching efficiency, and we optimize its FPGAs 

implementation. The experimental results show that on average the non-blocking 

latency can be reduced to 245ns at 200MHz, and transmission speed can be enhanced 

to over 300Mbps. The circuit scale can be reduced 50% compared with the original 

design in FPGAs implementation. 
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ABSTRACT 

The STAR-Dundee Virtual COM Port (VCOM) provides a serial interface from 

software on a Windows-based PC, via the standard COM port interface, to a remote 

UART, tunnelled over SpaceWire. It provides the ability to communicate with and 

test remote serial devices and applications in a lab environment. In this paper the 

features provided by the VCOM software, including remote UART configuration, and 

a protocol allowing serial errors and status to be propagated across SpaceWire are 

described. Applications of this technology to the configuration of a prototype 

wideband spectrometer, and potential extensions to the VCOM abstraction are also 

discussed. 

1 OVERVIEW  

The STAR-Dundee Virtual COM Port exposes a remote UART (universal 

asynchronous receiver/transmitter) on a SpaceWire Network [1] to a PC as a standard 

Windows COM port. A specially-designed Windows driver provides this driver/API 

interface. The virtual COM port driver may be used with any STAR-Dundee USB-

based device.  

The virtual COM port appears to Windows and may be interacted with in exactly the 

same way as a physical COM port using the Windows File and Communication 

functions. The system operates by placing serial traffic received from a UART into 

SpaceWire packets and transmitting them across the network to the PC. Similarly, 

SpaceWire packets of the correct form received at the UART node are transmitted in 

serial form (Figure 1). 

When data is written to the virtual COM port, it has a SpaceWire logical address and 

protocol byte prepended, and is sent across the SpaceWire network. The VCOM 

driver continuously reads incoming SpaceWire data and buffers it, ready to be 

consumed by the user using the Windows File and Communication functions. 
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2 VCOM DRIVER  

In order to appear to Windows as a COM port, the VCOM software must be 

implemented as a device driver.  

2.1 UMDF 

The VCOM driver makes use of the Windows User Mode Driver Framework 

(UMDF), which allows it to use the existing STAR-Dundee user mode API. A major 

benefit of using UMDF is that the VCOM driver runs in a different thread from the 

requesting process and has access only to the address space of the process in which it 

is running. 

2.2 REMOTE UART CONFIGURATION 

All Windows Serial IOCTLs (I/O controls) are handled by the VCOM driver, and the 

file type of the file handle returned when opening a VCOM port is a character file, 

enabling any legacy application that requires a COM port interface to be used with 

VCOM. RMAP (Remote Memory Access Protocol) [2] is used to perform all 

configuration operations on the UART over the SpaceWire link. 

The SpaceWire Virtual COM port configuration API provides functions which can be 

called to configure both the virtual COM port device on the host PC and the remote 

UART attached via the SpaceWire link. A graphical configuration tool is provided 

which makes use of this API. 

2.3 PACKET FORMAT 

VCOM uses a simple packet format (Figure 2) containing the Protocol ID [3] and a 

status byte in addition to the data bytes. The protocol ID is the first byte after the 

logical address. The use of logical addressing allows multiple VCOM drivers on a 

single machine, each communicating with a different remote UART to share the same 

SpaceWire interface. The Protocol ID is used by the driver to ensure a valid packet 

has been received. ID 0xF0 has been chosen as it has not been assigned by the 

SpaceWire working group. The next byte in the packet is the status byte. This bitmask 

Figure 1: Overview of VCOM Communication 
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provides information to the VCOM driver of any errors that have occurred at the 

UART, for example framing or parity errors, or whether a break state is in progress. 

First Byte Transmitted  

Logical Address Protocol 

Id 

Status Byte Data EOP 

0xAB 0xF0 0x00 ... ... 
Figure 2: VCOM packet format 

2.4 FLOW CONTROL 

Flow control between the host computer and the remote UART is performed using 

SpaceWire flow control. As the serial communication between the remote UART and 

the serial hardware is a 3-pin implementation (receive, transmit and ground) there is 

no flow control. Instead, a large buffer is present at the VCOM SpaceWire interface, 

and is used when receiving large numbers of packets in quick succession. When a 5-

pin UART implementation is being used with the CTS and RTS signals available, 

flow control can be provided to the UART. 

3 CURRENT APPLICATION OF VCOM  

STAR-Dundee Ltd is currently developing a prototype wideband spectrometer 

instrument with the University of Dundee, EADS Astrium Ltd and RAL. This device 

samples an analogue signal at around 3 Gsamples/s and performs spectral analysis to 

extract a signal buried deeply in noise. The prototype instrument is targeted at 

atmospheric chemistry missions. A Xilinx FPGA is used to implement the prototype 

Fast Fourier Transform (FFT) with the FFT code itself being developed by Astrium.  

The prototype wideband spectrometer is shown in Figure 3. 

 

Figure 3: Prototype wideband spectrometer 
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To simplify integration in the development environment an RS232 interface was 
required for controlling the FPGA along with a JTAG port for programming it. 
However, using a single SpaceWire interface to configure and access the device is 
preferable. VCOM was developed to solve this problem. 

4 POTENTIAL APPLICATIONS OF VCOM 
The VCOM abstraction is not limited to controlling a remote UART. Keeping the 
same software and SpaceWire hardware, a VCOM core could be created enabling the 
remote UART to be replaced with any remote streaming interface. Instead of a remote 
UART, one could keep the same abstraction of a COM port, but control, for example, 
a generic FIFO, I2C, Serial Peripheral Interface Bus (SPI), a Xilinx LocalLink bus [4], 
Altera Avalon Streaming Interface bus [5] or a Xilinx Fast Simplex Link bus [6] 
(Figure 4). 

The Windows serial functions would still be used to control the data streamed over 
SpaceWire (i.e. start bits, stop bits, data length parity, timeouts), with additional 
IOCTLS used to allow configuration of specific streaming interfaces where necessary. 

 

SpaceWire

Serial

Remote DeviceHost Computer

VCOM

Virtual COM port 

User application

e.g. HyperTerminal

SpaceWire Driver Network

VCOM Core

VCOM 
Interface

SpaceWire 
Interface

UART SPI

Hardware Hardware

FIFO

HardwareHardware

I2C

 

 

5 SUMMARY 
VCOM allows serial applications using the standard windows COM port to be used to 
access hardware over SpaceWire. This paper has shown an application of VCOM to 
allow communication with a prototype FPGA to be performed over SpaceWire. In 
addition this paper has highlighted further potential uses of the COM port abstraction 
for controlling remote hardware.  
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ABSTRACT 

 An approach to practical implementation of fault-tolerant redundant onboard 

computer system is suggested. Redundancy of electronics modules (microcomputers) 

is achieved via triple majorization of outgoing network packets in SpaceWire 

network. Group of modules is self-synchronised by SpaceWire network tools in 

compliance with patented procedure.  Information is recovered and synchronised after 

single failures by protocol ECSS-E-50-11 SpaceWire/RMAP utilities.  

 Method is applicable for microcomputers with processors built both as IP 

cores in FPGA (for example, Intel 186 or Leon3) and single microcircuits (RAD750). 

To implement the method IP core of SpaceWire router for Actel FPGA with extended 

services of packets majorization, support of data recovery and synchronisation 

protocols is designed.  

 To test the method a demonstrator of space vehicle full-scale onboard network 

with two SpaceWire channels and redundant computer is developed and 

manufactured. 

 

Satellite electronics reliability requirements are typically very high due to 

extreme conditions onboard: radiation, huge thermocline and mechanical shocks at the 

launch. The most common approach to provide high reliability is triple redundancy 

for almost all functional electronic modules. Synchronous operation of modules is 

essential to organise hardware voting schemes so it has to be provided by certain 

software and/or hardware solutions. Modern high speed networking technologies are 

capable to solve both synchronisation and N-modular redundancy voting tasks inside 

virtual information space. The approach for virtual N-modular redundancy described 

below is based on an approved patent application (RU 2008146151/09(060313)) 

regarding procedure and setup for self-synchronisation of modules by SpaceWire 

network tools. Full compliance of the method with existing international networking 

standards
1
 opens the way for its practical application. 

                                                 
1
 Standards: ECSS-E-50-12C SpaceWire and ECSS-E-50-11 SpaceWire/RMAP 
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Figure 1: Solution outline 

 

The most practically recognised N-modular redundancy system is for N=3. Triple 

redundancy solution for CPU-based SpaceWire node is outlined at Figure 1. The 

router operation is modified both for incoming and ongoing data transactions. 

Incoming data packets are forwarded to all three units in the node simultaneously by 

custom multiplexer. Provided all of three identical units of the node are operating 

synchronously their outgoing data packets may be majorized and “2 of 3” voting 

principle may be applied. If one of the three packets is corrupted or absent the rest of 

the network will be not affected. It’s an important note that all of three units in the 

node may avoid any data exchange between each other in normal mode so any of 

these units “may presume” its uniqueness. This may simplify software design 

considerably.   

 

For the system to operate data packet majorization should be performed within pre-

programmed time frame Тmaj which is practically data propagation delay for the 

voting scheme as shown at Figure 2. Тmaj is also related to maximum asynchronism 

of unit operation within the redundancy scheme. 

 
Figure 2 :Data packet majorization 
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Once any of units is late to provide correct packet within Tmaj or sends the data not 

similar to other’s an error is detected but the node in general is still fault-less and the 

rest of SpaceWire nodes are not affected. As real-world clock generators provide 

variable frequencies the units will run same software/algorithms with slightly 

different speeds and special efforts must be taken to keep system synchronism. 

A suggested approach to synchronise all units within a node is based on the local 

network broadcasts to allow unit processors operation for a pre-defined number of 

clock cycles. Once all processors of the node perform similar number of clock cycles 

within a certain time frame the synchronism precise enough for data majorization 

scheme to operate may be maintained. 

 

To implement the principle each of units within a node must have a dedicated timer 

for  synchronisation. On the count end an interrupt has to be generated to perform a 

sync packet broadcast by each of the units. Once the packet arrives (propagated to all 

units at the same time) all timers has to restart and late sync packets to be ignored as 

shown at Figure 3.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 :Synchronisation principle 

 

Its essential that all units perform same number of instructions (clock cycles) between 

the synchronisations. This may be achieved by halting the processors within every 

synchronisation periods as shown at Figure 4. Effective running time T2 will be less 

then sync time T1 but practically the performance loss will not exceed 1% as may be 

easily shown by calculations. For normal operation the standby time T1-T2 must be 

bigger than possible time difference between system’s slowest and fastest clock 

generators to count the necessary number of cycles. With typical clock precision 

dispersion of 1 ppm the standby time T1-T2 will not affect system performance. The 

overall operation scheme is shown at Figure 5. 
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Figure 4: Operation of the synchronised unit 

 

 
 

Figure 5: Operation of three units within a node 

 

Simplified structure of FPGA implementation for the unit being discussed is presented 

at Figure 6. Two major functional blocks are: modified SpaceWire controller and 

processor unit. Processor unit may include almost any CPU IP ranging from 8051 up 

to Cortex or Leon3. Also external processor may be used once its interface supports 

standby mode predictable start/stop operation. RMAP protocol support may be 

implemented for system recovery after errors and for initial synchronisation as a 

software-free method to fill data memory of the unit with information. 
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Figure 6: FPGA-based unit structure 

 

As no ASICs are currently available on the market to implement the method described 

above, the only way possible is to use FPGA. The radiation-tolerant RTAX family 

Actel FPGAs with hardware TMR of each logic tile may be used both for unit design 

and for router design.    

   

There is also a chance to use SpaceWire-based triple redundancy system for 

non-SpaceWire systems as shown at Figure 7. Three identical processing units with 

integrated CPU IP cores and SpaceWire controllers may be placed on the same PCB. 

Only two additional FPGA-based routers/bridges are necessary to organise local 

SpaceWire network and implement the method as discussed. The approach may be 

less power and space consuming compared to multi-layer TMR of the hardware 

signals within the same PCB. 
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Figure 7: Single-board solution for SpaceWire-based TMR in non-SpaceWire 

environment 

 

A full-function demonstrator based on Intel 186 compatible CPU IP cores was 

designed to test the method featuring the idea, the SpaceWire network and Actel 

FPGA. 
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ABSTRACT 

In the paper we present reconfigurable IP-block terminal node controller (without 

processor core) that is based on the SpaceWire protocol. This IP-block includes a two-

port SpaceWire routing switch and controllers for two SpaceWire transport protocols: 

RMAP controller unit and STP (Streaming Transport Protocol) controller unit.  

RMAP controller in this IP-block is used for providing remote configuration of 

terminal node modes of operation. STP controller is used for data stream transfer to 

hosts. 

The embedded in it small routing switch with two SpaceWire ports could be used for 

terminal node throughput increase, for building of daisy-chain interconnections of 

terminal nodes structures (if data flows from terminal nodes are not intensive), for 

fault-tolerant connection to SpaceWire networks. 

Possibility of IP-block reconfiguration is considered. The RTL model of this IP-block 

could be configured as only RMAP or only STP controller. The SpaceWire routing 

switch external ports number could be vary from one to four. 

In the paper we present main features of the designed protocol components, present 

some research results of RMAP and STP data transfer. We evaluate overhead and 

delays for same data flows translation with using RMAP and STP, compare power 

consumption by implementations of these protocols for same data flows transfers. 
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ABSTRACT 

In many applications SpaceWire networks are used for data transmission from sensors 

(sensor fields) to an onboard computer, for transmission from a computer to 

distributed actuators, data sinks. Multiplexing of data packet flows with small density 

to high density packet flow task and inverse task arise. In the article we consider 

problems of packet flow multiplexing with SpaceWire routing switches. 

1 INTRODUCTION 

The SpaceWire allows networks with arbitrary topology, ensures scalability to support 

various requirements in number of nodes, throughput and fault-tolerance. The article 

considers methodology for development of efficient SpaceWire interconnection 

topologies for distributed onboard data acquisition and control systems. 

One of SpaceWire interconnections problems is efficient support of data flows from 

multiple low intensive sources. Data packet flows from primary sources may have low 

density. SpaceWire links utilization could be very low, cabling and numerous routing 

switches to support many terminal nodes in interconnection could be excessive in 

implementation cost. To deal with the cost-efficiency problem for low throughput 

segments of SpaceWire networks daisy-chain topologies could be efficient.  

Multiport SpaceWire terminal nodes application for daisy-chains implementation is 

considered. Summary data packet flow from such a chain could provide reasonable 

load for a routing switch port. In the article we estimate hardware costs and data 

packet delivery latency for hierarchical network structures with and without daisy-

chains. Research results are corroborated by SpaceWire networks simulation. 

2 DATA PACKET TRANSMISSION TIME 

Let’s consider the tack of some SpW data sources (data flow is 1Mbit|c) connection to 

one destination host; system includes 15 sources and one host.. Data flows could be 

multiplexed with using SpW routing switches (Figure 2, a) or daisy-chain (Figure 2, 

b). In switch based system 15 ports could be used for source nodes connection and 
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one port – for data transmission to host or next level routing switch (if system 

includes some levels of multiplexing). In such system link rate from sources could be 

small for power reduction or because of long cables. Link rate to the host typically is 

essentially higher. Therefore the full packet buffering in input ports of switch that are 

connected to sources should be used, as it is illustrated by Figure 1: it allows 

excluding Idle symbols transmission from switch to host when next data symbol from 

current packet is not yet received from source, because rate of its link is low. 

Figure 1 
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Figure 2 

The maximal data packet transmission time from source node to host via switch (or 

next level switch) could be evaluated with formula (1) if data packet generation 

moments in different terminal nodes are independent random variables: 

transhbufsw TNTTT *)1(max     (1) 

Here Tbuf – time between start of packet transmission from source (from internal 

buffer of source if it exists) to the switch and receipt of last byte of packet into switch 

input port buffer. Th – header processing time, depends on switch specific features. N 

– the number of nodes connected to this switch. Ttrans –the transmission time from 

input port to output port of switch and then to host. It depends on data transmission 

rate via switch matrix, link to host rate and output port load. Tbuf depends on link rate, 

source data flow intensity, packet length and terminal node and switch specific 

features. Two possible variants: 1) the packet is fully formed in node’s buffer before 

sending out; Tbuf depends only from the link rate; 2) the packet transmission from 

source to host begin when the source have prepared first packet symbol; next words 

are sent one by one when ready; Tbuf depends on data generation rate in the source.  

For daisy-chain (Figure 2, b) every source terminal node should include two ports 

routing switch SpW. The packet transmission time between terminal node and host 

(next level switch) could be evaluated by next formula: 

input_controller j output_cont
roller k

RX speed 1x TX speed 4xt0t4t8t12

output_cont
roller k

TX speed 4x

TX speed >> RX speed
Fly-by 

input_controller j output_cont
roller k

RX speed 1x TX speed 4xt0t1t2t3

input_controller i
RX speed 1x

t4t5t6t7
output_cont

roller k

TX speed 4x

With buffering  
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)*2(*)1(max transhtranshchain TTNTTT     (2) 

N is a serial node number in the chain; Th – the header processing time in terminal 

node’s switch; Ttrans – the packet transmission time between output port of terminal 

node and input port of next terminal 

node (considered equal for all stages 

of chain). 

Dependency between Tmax and data 

packet length is presented on Figure 3. 

We consider first variant of packet 

forming. For all packets overhead (the 

length of SpW header and other data 

form transport and application level 

are equal 8 bytes in this example) 

Figure 3 

Diagrams show that maximal 

transmission time for a chain is about 

two times bigger than for a switch. For many applications these time is acceptable, but 

for some applications it could be too big. 

For a switch based system transmission, when all sources generate data packets 

practically at the same moment, is the worst case – packet from one source should 

wait until packets from all other nodes would be sent o; all packets are received by 

switch in parallel but only one packet could be sent to output port in one time.  

swstsw TT max      (3) 

For daisy-chain system this case corresponds to the best variant. Every packet starts 

forwarding to neighbor node practically in one time. When packet arrives at next node 

it do not need to wait for transitions of any other packet;  Tstsw is equal to Tstchain. 

)(*)1(min transhtranshbufftnchainstchain TTNTTTTT    (4) 

Dependency between average packet transmitting time and number of nodes in daisy 

chain when all packets are generated in one time are at Figure 4.  (data field 64 bytes).  

Figure 4 
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For a system, in which we need to collect information from number of nodes that is 

bigger than number of one switch ports, 3 basic variants of structure: fully switch 

based structure; structure in which at low level are daisy-chains and at next levels are 

switches; and structure fully based on daisy-chain. For example we consider system 

with 60 sources. This system could include 5 switches (4 switches multiplex 

information  from sources -  15 to 1 each and one second level switch) (structure 1, 

Figure 5, a); 13 switches (12 switches multiplex information  from sources -  5 to 1 

each and one second level switch) (structure 2, Figure 5, a). System could include 4 

daisy-chains with 15 nodes in each and one second level switch (structure 3, Figure 5, 

b); could include 12 daisy-chains with 5 nodes in each and one second level switch 

(structure 4, , Figure 5, b). System could be one daisy chain with 60 nodes (structure 5, 

, Figure 5, c). 

TN 0 TN 1

Routing switch 0

TN 14/4 TN 0 TN 1

Routing switch 3/11
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Host  

TN 0

TN 1

Routing switch 
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Figure 5 

Dependency between average packet transmission time and link rates for these 

structures are presented on Figure 6 (data field size is 64). For structures 1, 3 and 2, 4 

packet transmission times are 

practically equal. It shows that 

packet transmission time for all 

structures is practically equal 

when data transmission rate on 

low level is high. When data 

transmission rate on low level 

is low the best transmission 

time (in 2,5 times better than in 

other structures) are for 

structures 2 and 4 (in which on 

low level the switches with 

small number of ports and short 

daisy-chain are used).  

Figure 6 

For long daisy-chain with 60 nodes average and the switch based system transmission 

time on high data transmission rate (240 Mbit/c)  is practically equal. 

3 HARDWARE COST 

Typical structure of SpW routing switch includes SpW ports (codec SpW), SpW 

port’s controllers (arbitration blocks, switch fabric channel controllers, data buffers), 

switch fabric, routing table and control|state registers. Hardware cost ratio of different 

component in switch essentially depends on RTL specific and technology libraries. 

But we select some basic ratios. 
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Let’s compare hardware cost of 2-ports switch that need to be in terminal nodes for 

daisy-chain and 16-ports switch. The 16-ports switch includes 16 ports and 

controllers, one configuration port controller; 2-ports switch includes 2 ports and 

controllers, also hardware cost of these components of 2-ports switch is in 5,6 times 

less than for 16-ports switch. Switch fabric of 16-ports switch is in 32 times more than 

of 2-ports switch. Hardware cost ratio between ports, port controllers and switch 

fabric depends on many factors, especially on port controller’s buffer sizes. Figure 7 

represents relative hardware cost of 5 considered structures (unit is hardware cost of 

one channel of switch matrix). We suppose that for every structure switches exactly 

required numbers of ports are used. Comparison is represented in the table. 

 Hardware cost of switches 

(buffers less than 1024) 

Hardware cost of switches 

(buffers bigger than 1024) 

Number of 

connectors 

Structure 1 worst best 70 

Structure 2  best 86 

Structure 3 best  125 

Structure 4   133 

Structure 5 best worst 60 

 

For systems with smaller packets 

daisy-chain based systems have smaller 

hardware cost. If packets are big, then 

switch based structures are better.  

In many applications hardware cost 

(weight) of cables and connectors, 

average and maximal length of cables, 

number of cables, number of 

connectors are very important. These 

parameters depend not only on 

interconnection graph but on real 

component and cable placement. In 

some cases switch based graphs are 

preferred; typically need less 

connectors, sometimes less cable 

length than for daisy-chain. 
Figure 7 

But number of cables goes via cutest for switch based system is essentially bigger 

than for daisy-chain. Also in view of topology for some other application daisy-chains 

(at least on low level) are preferred. 

4 CONCLUSION 

In many cases daisy-chain better corresponds system topology. Data transmission rate 

for daisy-chain should be in two times bigger than for switch based system for 

reaching same packet transmission time. Daisy-chain based systems are useful on low 

levels of data multiplexing in systems with small packet sizes. 
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ABSTRACT 

NLR developed in co-ordination with Satellite Services (Katwijk, Netherlands) an 

universal SpaceWire interface that is fully ready for production. This SpaceWire 

interface module is a PCI Mezzanine Format (PMC) and accommodates 3 DS 

SpaceWire links (Data Strobe encoding). It is connected to the PCI local bus of the 

PowerPC board by a high-performance 132 MB/s PCI interface. 

Special features of this SpaceWire interface are: 

 transmit speed up to 200 Mbit/s 

 time-tagging for both incoming and outgoing packets 

 wormhole routing,  

 segmenting of large data structures 

 priority settings for each channel 

 and channel routing 

 

This interface focuses on usage in EGSEs and SCOEs. It can be used in a PC 

environment (PCI bus) aswell as in an embedded PC environment (VME / compact 

PCI), have maximum performance and is flexible in use.  

1 BLOCK DIAGRAM AND FEATURES 

The block diagram of the SpaceWire PMC module is depicted in figure 1.  

The central part of the interface module is the Xilinx Virtex4 FPGA that contains the 

ESA SpaceWire cores and the VHDL, developed by NLR, to incorporate the rest of 

the functionality. 

The module has three SpaceWire DS links routed via FIN1102 LVDS repeaters. The 

Dual ported RAM is of size 512k x 36 and the module has one PCI accelerator 

PLX9056. The Pulse Per Second interface can be provided via a LVTTL/RS422 

receiver. Power is extracted from the carrier board (3.3 Volt); the local voltages are 

generated on the board itself (including the start-up controller). The FRAM memory 

can be used for storing settings and parameters. 
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Figure 1: Block diagram of the SpaceWire to PCI interface module 
 

The main features of this SpaceWire interface PMC module are: 

 Provides three bi-directional asynchronous SpaceWire DS links via 3 ITT 

Cannon D-miniature connectors 

 Maximum data rate of 200 Mbits/s sustained throughput on three links 

(measured: 260 Mbits/s) 

 Provides 33/66 MHz 32 bits PCI interface 

 PCI accelerator PXI9056 to facilitate PCI burst read and write cycle between 

Dual Ported RAM and host memory 

 On-board Dual Ported RAM (512k x 36) as FIFO for temporary storage of 

data-to-be-send or data-received 

 Pulse Per Second synchronisation (LVTTL or RS422) 

 CUC timer (CCSDS Unsegmented Time Code) for time stamp of received and 

sent data packets 

 General purpose FRAM memory (among others for storing settings) 

 Temperature sensor, JTAG interface, Reset button on front panel and internal 

loop-back functionality for test purposes. 

 

Note that for verification, two of these SpaceWire PMC modules are placed on a 

commercial Motorola PowerPC VME board; providing 6 SpaceWire links in total. 

2 FPGA ARCHITECTURE 

The FPGA architecture is depicted in figure 2.  

The module allows communication between three SpaceWire link interfaces and a 

host processor. Data is exchanged between host memory and PMC using hardware 

initiated DMA. Data format exchange is based on so-called segments (enclosed 

packets or packet parts). The module allows a sustained throughput of 200 Mbits/s 

over three links. 
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Figure 2: Block diagram of the FPGA 
 

The Loopback switch, on the left side, offers the possibility to (re)route SpaceWire 

output data of a specific link to the input part of another link (or directly to its own 

input part). This feature can be used for PMC testing.  

The SpaceWire Block (SWB) contains the ESA IP core. It allows SpaceWire packet 

transmission according to the SpaceWire specification ECSS-E-50-12A see [1]. The 

IP core also contains an AHB interface for communication to the host and uses the 

APB interface for internal register I/O. For the SpW PMC module the AHB (high 

performance bus) interface is not used for host I/O communication, but instead the 

FIFO interface is used to interface with the other VHDL components. 

The Wormhole Controller (WHC) controls the transmitted data to a link (output 

packet if CUC time arrived) and controls the received data from a link (generate CUC 

time in segment header). It performs the route check (destination can be the host, or 

another link or both) and this component adds CUC times to the segment header. 

When the packet from the link is larger than the maximum segment size (defined by 

the host) the packet will be split up into segments of max_segment size. Per link 

interface a CUC time is maintained, based on the external CUC clock, the PPS input 

and host read/write CUC time capabilities. Output of a SpW packet is delayed until 

the requested CUC time (in the segment header) has come.  

Segments to transmit are stored into DPRAM by the Host Data Handler (HDH), and 

retrieved from DPRAM by the Local Data Handler (LDH) into the transmit FIFO of 

the Transmit Data Handler (TDH). 
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The Transmit Data Handler will read the FIFO and strip the segment header from the 

segment data (which is the SpaceWire packet). The output packet data (converted to 9 

bits wide) is offered to the WHC, preceded by the packet status and CUC time bytes 

The Receive Data Handler (RDH) controls the reception of packets. It stores the 

received data until the LDH is able to read this link interface. Since three channels can 

offer data to be stored in the DPRAM, the LDH decides (arbitrates) which channel is 

permitted to store data in DPRAM. 

The Local Data Handler (LDH) interfaces between the link interfaces (RDH/TDH) 

and the DPRAM. The LDH is responsible for correct segment storage into DPRAM 

when SpaceWire packets from a link are received. Segment data from host to a link is 

retrieved from DPRAM and send to the TDH. Due to each link interface acting 

concurrently, the LDH arbitrates which link interface is able to send or receive 

DPRAM segment words. 

The Host Data Handler (HDH) interfaces between PCI accelerator (PCI9056) and 

DPRAM in case of data exchange, and interfaces between PCI accelerator and PMC 

registers in case of PMC control (register read/write actions).  

The PMC control (PMCCtrl) module is used for general PMC control, like controlling 

the Non link specific registers that are allocated in this module and handling the PMC 

interrupt sources. Also the CUC clock is generated in this module, using the external 

33.554432 clock input signal. It also contains the FRAM I/O control. 

3 API 

Next to the hardware (and VHDL) development, the NLR has written the Application 

Programming Interface (API) for VxWorks for this SpaceWire interface module. The 

API contains the function calls to the PMC module. No direct (register) access to the 

SpW_PMC module is foreseen. 

The following function calls are available: 

 SpWCardOpen/Reset/Close/Status 

 SpWNodeOpen/Close/Control/Status 

 SpWNodeSetTime/GetTime 

 SpWLinkOpen/Close/Control 

 SpWLinkStart/Stop 

 SpWLinkReadPacket/WritePacket/WriteStop/Status 

 SpWCucControl/CucReadTime (per link) 

 SpWPpsControl/LedControl/JtagStatus 

 SpWRegisterRead/RegisterWrite (Enables PMC register reading/writing) 

 SpWFramRead/FramWrite 

 SpWDpramRead/Write 

 SpWReadSegment/WriteSegment 

4 REFERENCES 

1. ESA-ESTEC ECSS-E-50-12A, “SpaceWire - Links, nodes, routers and networks”, 

Jan-2003. 
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Figure 3: Picture of the SpaceWire PMC module 
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ABSTRACT  

This paper describes the incorporation of the ESA RMAP IP core within the Modular 

Architecture for Robust Computing (MARC) system and within the BepiColombo 

Remote Interface Units (RIUs).  

The MARC development system implemented the IP core within Actel PRO-ASIC 3E 

FPGAs. Both SpaceWire Initiator and SpaceWire Target configurations have been 

instantiated as part of the MARC project. The BepiColombo RIUs each utilise the 

ESA RMAP IP core configured as SpaceWire targets within Actel RTAX-S FPGAs. 

The paper summarises the implementation details of each system and the performance 

achieved. 

1. INTRODUCTION 

The ESA RMAP (Remote Memory Access Protocol) IP core is a SpaceWire interface 

VHDL core that includes the RMAP protocol extension to SpaceWire.  It has been 

developed with ESA funding by the University of Dundee. SEA was selected as an 

Alpha user of the IP core as part of the MARC development. The RMAP IP core is 

now currently being integrated in to the Remote Interface Units (RIUs) for the 

upcoming ESA BepiColombo mission to Mercury. 

This paper begins with a review of the RMAP IP core implementations within the 

MARC and RIU systems, then discusses the main issues encountered during its use. 

Full details of the RMAP IP core can be found in the University of Dundee User 

Manual (reference [1]).  
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2. MARC IMPLEMENTATION 

All MARC modules have two SpaceWire interfaces for redundancy and these 

incorporate RMAP functionality (via the ESA RMAP IP core). The RMAP protocol is 

defined within reference [2]. 

 The 2 core Computing Modules (CCMs) contain two full RMAP IP cores 

(both Initiator and Target enabled) controlled by a LEON2FT fault tolerant 

processor.  

 The core Hardware Reconfiguration Controller (CHRC) contains two RMAP 

IP cores configured as Target only. This module provides the Failure 

Detection and Isolation functionality for the system. 

 The 2 Solid State Mass Memory modules (SSMMs) contain two RMAP IP 

cores configured as Target only. These modules provide the bulk data storage 

for the system. 

These modules are integrated onto an active backplane containing four Atmel 

AT7910E SpaceWire routers.  The architecture is illustrated below.  
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The prime and redundant CCMs can access memory located on any module as an 

extension of its own memory using the RMAP protocol. The CCM can access 

software and data resources from at least 3 sources, i.e. local,  the other CCM or the 

Solid State Mass Memory modules. The RMAP protocol provides an efficient 

memory access capability which also allows the system to recover from the failure of 

the prime CCM by storing context saving memory within the system which can be 

accessed by the redundant CCM.  
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3  MARC PERFORMANCE 

The MARC implementation initialises the SpaceWire link at 10Mbit/s (as per 

reference [3]), then runs the links at 100Mbit/s. The IP core is configured in the 

TXCLK_DIV configuration driven by an external 100MHz clock for the Transmit 

clock and by a 25MHz clock for the system clock. In order to achieve the desired 

operational performance, the fastest -2 grade of FPGA was required. The large size of 

the RMAP IP core resulted in the largest ProASIC 3E device being used (3,000,000 

gate A3PE3000).   

Initially the RMAP IP core Initiator and Target functions were tested by direct 

connection of the modules to a University of Dundee SpaceWire Brick. Once the 

RMAP links were operational, the modules were plugged into the backplane, where 

testing of the SpaceWire links to/from the Atmel SpaceWire Routers was performed. 

At this stage the RMAP IP core Initiator was used to initiate the sending of packets 

from/to another RMAP IP core (Target) via the router network including self 

addressed packets. The only major issue encountered during this testing was a 

premature timeout of messages sent by the RMAP Initiator, however this has now 

been rectified by a later release of the IP core (v1.0). 

4 RIU IMPLEMENTATION 

The Remote Interface Unit has two SpaceWire Controller modules. Each module 

contains an FPGA containing two ESA RMAP IP cores. The Onboard Computer 

communicates with the RIU using SpaceWire RMAP packets to retreive sample data 

and command outputs. Both RMAP IP cores are configured as Target only (to ensure 

that no messages are initiated by the RIU). The design is targeted at an Actel 

RTAX2000S FPGA. The IP core is configured in the SYS_DIV configuration clocked 

by an external 20MHz oscillator.   

5 RIU PERFORMANCE 

The RIU initialises each SpaceWire link at 10Mbit/s (as per reference [3]), then runs 

the links at 2Mbit/s. The design has not yet been validated on the bench; however no 

issues are envisaged due to the relatively slow speed of the links (in relation to the 

previous MARC system). 

6 IMPLEMENTATION ISSUES 

6.1 CLOCK RECOVERY 

One of the major issues experienced during integration was caused by repeated 

failures in the recovery of the receive clock from the SpaceWire Data and Strobe 

signal lines.  This is a function of the SpaceWire CODEC contained within the RMAP 

IP core. The recovery is performed using a simple XOR gate. Numerous placements 

constraints were required to prevent the recovered clock from clocking the rising and 

falling edge input flip flops prior to their input setup time. The input XOR gate and 

input flip flops were manually placed within the FPGA and all VHDL blocks 

associated with the receive clock were constrained within a region to reduce skew. 

Actel have issued an application notice regarding this problem (reference [4]). A pre-

synthesised core of this section would be a benefit for developers. 
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6.2 IP CORE EXTERNAL BUS 

The external bus of the RMAP IP core can be sized as 1, 2, 3 or 4 bytes wide using a 

VHDL generic. The RMAP IP core is designed to increment addresses by 1 when 

using incrementing read/writes from memory, regardless of memory width. The 

addressable memory size therefore quadruples when using a 32 bit wide external bus 

instead of an 8 bit wide bus. There is no feature which allows the external address to 

increment as byte aligned i.e. Bits 1 and 0 are don’t care on a 32-bit address. This 

caused integration issues when passing data pointers into the RMAP Initiator from the 

Atmel AT697F 32 bit wide local bus which is byte aligned. This could only be 

resolved with a software workaround within the AT697F code.  

6.3 SEU PROTECTION 

A major drawback in the use of the RMAP IP core for a space mission is that SEU 

protection is not provided in the current RMAP IP core model. In space applications, 

storage elements like SRAM are susceptible to soft (transient) errors caused by heavy 

ions. Space grade FPGAs, such as the Actel RTAX-S provide SEU protection for the 

synchronous elements in the design (flip-flops); however memory blocks are not 

protected.  Actel memory blocks can be protected using their proprietary CoreEDAC 

block (described within reference [5]). The RMAP IP core therefore has to be 

modified to incorporate CoreEDAC blocks around the RAM elements. Small 

memories within the IP core are implemented as flip flops.  

6.4 VHDL GENERICS 

The RMAP IP core contains a large amount of VHDL Generics to configure the 

desired functionality. VHDL Generics are contained within both the RMAP and the 

SpW CODEC sections of the IP core. The user therefore has to validate their own 

particular configuration, which is unlikely to have been previously verified. The large 

amount of generics impacts the results of code coverage due to the numbers of lines 

which are not executed.  

7. SUMMARY 

The RMAP IP core is a flexible, configurable VHDL IP core which can be readily 

adapted to meet the varied requirements of user systems. As itemised above there are 

a number of enhancements which could be considered for a future release to ease its 

usage in future space missions. Overall the integration/testing of the RMAP IP core 

has been positive and no issues are foreseen with the BepiColombo RIU 

implementation. 

8. REFERENCES 
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ABSTRACT 

WSO-UV is a space astronomy project, which is under the development with joint 

efforts from Russia, China, Germany, Italy, Spain, the United Kingdom and a number 

of other countries in the world. There are three scientific instruments onboard WSO-

UV: the High Resolution Echelle Spectrograph (HiRDES) lead by Germany; the Long 

Slit Spectrograph (LSS) lead by China; and the Slitless Spectroscopy Instrument for 

Surveys (ISSIS) lead by Spain. The Long Slit Spectrograph instrument is able to 

observe faint extra-galactic sources at the far-UV spectral range with high efficiency. 

SpaceWire is selected as the scientific data network onboard. The development team 

of LSS electronics comes from CSSAR, CAS, who are designing the data handling 

system based on SpaceWire at present. 

This paper introduces the architecture of SpaceWire data network onboard, presents 

the solution for the SpaceWire interface of the data handling system of LSS, and 

describes the WSO-UV RDDP Transportation protocol, the QoS mechanism and 

design in detail. 

1 INTRODUCTION 

The "WSO-UV" Space Complex (SC) is intended to create a Space International 

Astrophysical Observatory on operational orbit. LSS is an important scientific 

instrument on the WSO-UV satellite. The phase A of LSS has been completed. The 

function of LSS is to acquire the low dispersion spectrum of the ultraviolet band at 

each point in the one dimension space at the same time. LSS has time tagged 

observation, integration observation, cycle-repeat observation, point source 

observation, plane source observation, simultaneous observation and other scientific 

observation modes. The functions of electronics unit of LSS are operation control and 

data handling. The electronics unit of LSS connects Science Data Management Unit 

(SDMU) via the SpaceWire bus of the Scientific Data Network (SDN). This paper 

briefly describes the SpaceWire interface hardware, protocol and design.  
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2 THE ARCHITECTURE OF SPACEWIRE NETWORK  

LSS is connected to SDMU through the SpaceWire, as shown in figure 1[1]. 

SpaceWire is the primary data exchange channel between the SDMU and the 

scientific instruments. 

 

Figure 1 the architecture of SpaceWire network  

Both the SDMU and all scientific instruments should be provided with two electronic 

control units, main and redundant (in cold redundant mode). The connection design of 

the SDMU and the scientific instruments should adopt the cross-strapped circuit. 

3 THE SPACEWIRE INTERFACE  

The SpaceWire interface unit of LSS can collect, organize and package the 

housekeeping data (HKTM) and observation data (STM) of Near Ultraviolet (NUV) 

Detector, Far Ultraviolet (FUV) Detector and Slit Viewer, and then send them to 

SDMU through SpaceWire, as well as receive onboard time-code and telecommands 

via SpaceWire.  

3.1 THE CIRCUIT DESIGN OF SPACEWIRE INTERFACE 

SpaceWire interface unit is composed of SpaceWire protocol controller, LVDS driver 

and receiver, dual-port RAM, control and interface logic circuit. The control and 

interface logic circuit is realized by FPGA to achieve the transport layer protocol of 

SpaceWire interface, and data exchange with the CPU. Figure 2 shows the SpaceWire 

interface block diagram. 

SpaceWire interface is dual cold redundant. Each unit has three SpaceWire ports. The 

primary and redundant channels connect with SDMU. The remaining channel is 

standby or used for test. Atmel's AT7911E is applied in the design.  

Synchronization is performed by SDMU periodically sending the time-code to the 

scientific instruments (8 times per second). The time-code conforms to ECSS-E-50-

12A standard. Each eighth time-code xxx000 (binary) is associated to the onboard 
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second mark (1Hz pulse) at accuracy 0…+20 microseconds (TBD) without error 

accumulation. The Onboard Time Code (OTC) is distributed by SDMU for each 

scientific instrument in the data packet per second, at the time interval of 0.4 to 0.9 

sec after each second mark (1 Hz pulse). 
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Figure 2 SpaceWire interface block diagram 

All of the telecommands from SDMU to LSS, housekeeping and science data from 

LSS to SDMU should be transmitted as packets corresponding to the ECSS-E-70-41A 

in the TP envelop. The size of the telecommand, housekeeping and science data 

packets should be defined the same and preliminarily equal to 1024 byte (without TP 

envelop).  

3.2 THE TRANSPORT LEVEL PROTOCAL 

The SDN transport level protocol conforms to WSO Reliable Data Delivery Protocol 

(WSO-RDDP) [3]. It is first used in NASA Geostationary Operational Satellite R 

Series (GOES-R). The RDDP complies with ECSS-E-50-12A [2] and adds the 

following capabilities to the SpaceWire link: multiplexed logical connections, reliable 

data delivery; missing packet detection, out of sequence packet reordering. All WSO-

RDDP packets include 8-byte header, followed by a variable length payload data, and 

then one byte CRC data. Figure 3 shows how the WSO-RDDP packet is encapsulated 

within the standard SpaceWire packet. 

Destination Logical 

Address 

Protocol ID Source Logical 

Address 

Packet Control 

Packet Length(MSB) Packet 

Length(LSB) 

Channel Number Sequence Number 

Data Data Data Data 

Data Data Data Data 

Data Packet CRC EOP 

Figure 3 WSO-UV RDDP Packet Format 
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3.3 QOS MECHANISM  

Each scientific instrument will send a HKTM packet to SDMU per second. To 

guarantee HKTM traffic reliability and timeliness, reference [4], we should complete 

QoS mechanism for the HKTM and STM packet transmission. The STM packets 

achieve assured QoS classes mentioned in SpaceWire-RT which provides a service 

reliably but not timely. If the guaranteed specified moment of the HKTM packet 

issuing within the second interval is required, each scientific instrument can be 

allocated its own time slot. For WSO-UV mission the QoS mechanism for HKTM 

provides a service which is both reliable and timely and is similar with the scheduled 

system in SpaceWire-RT. As HKTM and STM share the same transmission channel, 

we allocate different destination logic addresses to HKTM and STM, and request that 

logic address 32 has higher priority than logic address 48 to ensure timeliness.  

Ns
(N+1)s

Second mark (1Hz):

Time-code:

(octal)

LSS

FCU

HIRDES

Slot 0 Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7

(x-1) 07 x 1x 2x 3x 4x 5x 6x 7x 0(x+1) 1(x+1)

—Time-Slot for HKTM —Delivery Area of STM

 

Figure 4 Packets within the second interval 

As shown in Figure 4, HKTM packets are transmitted to SDMU independently and 

isochronously; STM packets are delivered in asynchronous mode, and are interlaced 

with HKTM packets. 

4 CONCLUSION 

The solution and designs for the SpaceWire interface, RDDP transportation protocol, 

the QoS mechanism are effective and meet the requirements. The above designs of 

LSS can also apply in the other missions in future. 
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ABSTRACT 

Traditionally the implementation of telemetry encoders and telecommand decoders 

for space has been made in hardware, at least for the last two decades. With the 

availability of more processing power (e.g. LEON3-FT - 32-bit fault-tolerant SPARC 

V8 processor), more of the encoding and decoding tasks can be moved to software, 

allowing flexibility for adapting the system to on-going standardization efforts. 

Combining the above approach with the use of SpaceWire Remote Memory Access 

Protocol (RMAP) [13] results in an interesting component and software architecture. 

TELEMETRY AND TELECOMMAND BACKGROUND 

The return of software-based decoders in space was made in late 2009 with the launch 

of the European technology demonstrator satellite PROBA-2. The telecommand 

decoder implementation was made partially in hardware (the lower protocol layers) 

and partially in software (the higher protocol layers). A telemetry encoder based on 

similar principals has been developed, and both are being used in several on-going 

projects in the frame of the ESA Reference Avionics System Testbed Activity 

(RASTA). Both designs have been used to form the basis of a novel Field 

Programmable Gate Array (FPGA) TM/TC design. 

ARCHITECTURE 

1.1 TECHNOLOGY 

The ECSS and CCSDS compliant TM/TC flight device FPGA has implemented in the 

anti-fuse RTAX2000S technology from Actel [18], which is radiation hard, latch-up 

immune, and has single-event upsets protected flip-flops. The on-chip (and off-chip) 

memories are protected against single-event upsets by means of BCH-based EDAC. 

1.2 FUNCTIONALITY 

The telemetry and telecommand concept is based on implementing the associated 

protocols partly in hardware and partly in software. The lower layers, such as physical 

layer and the channel coding sub-layer, are implemented in hardware, whereas high 

levels such as data link – protocol sub-layer are implemented in software. To provide 

the user with emergency capabilities, certain functions are implemented solely in 

hardware, for example pulse commands. 
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The TM/TC FPGA device features the following functions: 

 CCSDS / ECSS compliant Telemetry encoder [2][8][9]: 

◦ Virtual Channels implemented in software, via a SpaceWire RMAP I/F 

◦ Virtual Channels implemented in hardware, via two SpaceWire RMAP I/Fs [3] 

◦ Reed-Solomon and Convolutional encoding in hardware [1][7] 

 CCSDS / ECSS compliant Telecommand decoder [5][10]: 

◦ Multiple Virtual Channels implemented in software, via a SpaceWire RMAP I/F 

◦ One Virtual Channel implemented in hardware, with parallel pulse commands 

◦ Start sequence search and BCH decoding in hardware [4] 

The mix between hardware and software implementation carters for a safe and sound 

system at the same time as flexibility is provided to support upcoming standards. 

 
Figure: TM/TC FPGA block diagram 

SPACEWIRE RMAP USAGE 

1.3 INTERFACES 

The main interfaces towards the TM/TC FPGA are three independent SpaceWire links 

[11] that implement Remote Memory Access Protocol (RMAP) [13] completely in 

hardware. The TM/TC FPGA implements three RMAP targets. This allows an RMAP 

initiator to directly access the various functions inside the TM/TC FPGA by means of 
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RMAP read and write commands sent over SpaceWire to the TM/TC FPGA. The 

various cores in the TM/TC FPGA are thus memory mapped as seen from a 

SpaceWire RMAP initiator. A SpaceWire initiator can be any unit capable of sending 

and receiving  SpaceWire packets, with the RMAP protocol implemented in software. 

1.4 COMMUNICATION 

The novelty of this device is that the communication between the telemetry and 

telecommand system and on-board computer, as well as payload, is done by means of 

RMAP over SpaceWire links. Via RMAP read and write commands the device status 

can be observed and it can be controlled in a safe (verified-write command) and 

standardized way (ECSS standard).  

For software telemetry and telecommands, complete transfer frames can be moved 

between the device and on-board computer. For hardware telemetry, complete Space 

Packets can be sent from payload to the device. The RMAP target implementation in 

the TM/TC FPGA requires no local processor, simplifying the design and releasing 

logic resources. The CCSDS / ECSS telemetry software stack [2][8] and telecommand 

software stack [6] are executed on an external processor and the communication is 

handled via RMAP. 

The external processor does not need to implement RMAP in hardware. An RMAP 

initiator can be any device that can generate standard SpaceWire packets. The RMAP 

command is just a SpaceWire packet sent from the processor using its SpaceWire 

core. The RMAP response is just a SpaceWire packet sent from the TM/TC FPGA to 

the processor. A complete RMAP initiator software stack has been implemented for 

the RTEMS real-time operating system. 

DEVELOPMENT HARDWARE 

The TM/TC FPGA has been prototyped using existing development, mezzanine and 

accessory boards: 

 GR-CPCI-AX2000 Development Board 

 GR-TMTC-MEZZ Mezzanine Board 

 GR-TMTC-ADAPTER Accessory Board 

 GR-MRAM Mezzanine Board 

Figure: TM/TC FPGA development boards 
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CONCLUSIONS 

The TM/TC FPGA design and development hardware has been tested and validated 

with the target software and has been delivered to the first customer. The various IP 

cores [14][15][16] used to implement the FPGA can be used in other designs, 

allowing custom implementations to be created. The use of RMAP over SpaceWire as 

the main communication channel has been proven to work efficiently. 
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ABSTRACT 
The X- and gamma ray telescope ECLAIRs onboard the future mission for gamma ray 

burst studies SVOM (Space-based multi-band astronomical Variable Objects 

Monitor) is foreseen to operate in orbit from 2013 on. ECLAIRs will provide fast and 

accurate GRB triggers to other onboard telescopes, as well as to the whole GRB 

community, in particular ground-based follow-up telescopes. The ECLAIRs X- and 

gamma-ray imaging camera (CXG), used for GRB detection and localisation, is 

combined with a micro-channel X-ray telescope (MXT) for afterglow observations 

and position refinement. Sub-systems of both instruments interface with the French 

payload control unit (so called FCU - under CNES responsibility) by mean of 

SpaceWire links for PUS and CCSDS compliant message exchanges. 

 

1. INTRODUCTION 
The SVOM mission being a collaboration between the Chinese and French space 

agencies specific exportation rules must be fulfilled. In particularly these rules (ITAR, 

...) restrict drastically components availability. This is especially critical for 

microprocessors and FPGAs since most of the manufacturers are in US. In this paper 

we discuss the implementation of the SpaceWire IP core from CEA on various ITAR-

free target candidates. In particularly we present the performances and the 

implementation specificities for the ATF280 from ATMEL. 
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2. INSTRUMENT DESCRIPTION 
The SVOM payload is divided into two sub-assemblies: one in under the 

responsibility of the Chinese space agency – so called the Chinese payload – and 

comprises several instruments such as the Visible Telescope (VT) the Gamma Ray 

Monitor (GRM) while the second in under the responsibility of the French space 

agency – so called the French payload – and comprises also several instruments such 

as the Gamma and X- Ray telescope 

(ECLAIRs) the Micro channel X-ray 

Telescope MXT). Figure 1 depicts the 

overall architecture of the SVOM payload. 

As shown each ‘payload’ hosts a control 

unit in charge of the handling of the 

instrument covering both command 

distribution, data acquisition and routing as 

well as health check functions. Those units 

interface with the spacecraft by mean of a 

MIL-STB-1553 bus.  

Lets now focuses on the ECLAIRs instrument whose management is under the 

responsibility of the CEA. Figure 2 depicts the architecture of this instrument 

including the camera with both optics (‘coded mask’), detector plan (‘pixelised’ 

cadmium telluride) and front-end 

electronics (ELS) the Detector Control 

Unit (UGD) in charge of control of the 

camera and finally the Scientific 

Processing Unit (UTS) in charge of the 

spatial localisation of the gamma-ray 

burst either by detecting unexpected 

source in the field of view (‘image 

trigger’) either by detecting an excess in 

counting rate (‘counting trigger’). Both 

UGD and UTS units communicate with 

French Control Unit (FCU) for message 

exchanges. The SpaceWire standard was 

chosen to implement these interfaces by considering the benefits of using a well-

known standard. Thanks to its performances the electrical system is also well 

optimised since a single link can handle all kind of messages exchanged between the 

units. 

3. THE CHOICE OF THE FGPA 
When designing equipments with SpaceWire several options are possible: either to 

rely on existing implementations of the interface standard in ASIC, as provided by 

ATMEL or AEROFLEX companies, or either implement an IP core in an FPGA. First 

option minimizes development risk while the second one offers more flexibility since 

designers have the opportunity to host other functions of the equipment in the FPGA. 

It is this second option that was selected for the design of the UTS since the design 

relies on a LEON processor completed with FPGAS for data interfacing with the 

camera front end electronics and their pre-processing. Since we already had a lot of 

experience (HERSCHEL, SIMBOL-X, …) in the implementation of the SpaceWire 

 

Figure 2 – French payload block diagram 

 

Figure 1 – SVOM block diagram 
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standard we felt particularly confident with this choice. Starting from that design 

concept of the unit the remaining open issue was the selection of the target FPGA. At 

this time, several years ago, we add various possibilities between XILINX, ACTEL 

and ATMEL products. XILINX was the best choice at least on paper thank to its 

performance. But rapidly we had the reject this competitor due uncontrolled risk of 

failure of the device. Indeed because of the high pin count CGA package the device 

exhibits a poor reliability under thermal cycling condition. Next choice was the 

RTAX family from ACTEL, and again we had to reject it not for technical reason this 

time but due to exportation limitations (all the parts of the family are ITAR 

classified). Not classified parts from ACTEL were still available (RTSX family), but 

limited number of cells and lack of memory were not compliant with the 

requirements, except eventually for the implementation of the SpaceWire. Finally the 

only remaining solution was the ATF280 from ATMEL manufactured in Europe and 

therefore free of any exportation constraint, re-enforced by classification end 2009 of 

the ACTEL RTSX family. 

4. FPGA DESCRIPTION 
The ATF280 is a radiation hardened SRAM-based reprogrammable FPGA featuring 

280K equivalent ASIC gates and re-programmability. It contains 14400 logic blocks –

cells- with 2 x 3 inputs and a register element, a D-type flip-flop, with programmable 

clock and reset polarities. Additionally it features 115 Kbits of dual-port RAM called 

FreeRAM
TM

. The FreeRAM
TM

 is SEU hardened and is made of 32 x 4 dual-ported 

RAM blocks and dispersed throughout the array. The ATF280 has been especially 

designed for space application by implementing hardened cells and permanent self-

integrity check mechanism (300 krad max TID and 80 MeV LETth). It is available in 

two space-qualified packages: MCGA472 and MQFP256 packages offer respectively 

324 I/Os and 166 I/Os for user application. The FGPA is available either in QML-Q 

and V or in ECSS quality grades. 

5. IMPLEMENTATION OF THE SPACEWIRE CEA IP 
The implementation of the IP is achieved by mean of the software tools provided by 

ATMEL. It includes a VHDL synthesiser (Precision RTL 2008a1.11 OEM_Atmel 

from MENTOR) a router (Atmel Figaro IDS V9.0.2) and a programming tool 

(SpaceProgrammer v 4.0. from ATMEL). Design verification is achieved with the 

VHDL simulator ModelSim (from MENTOR).  
The implementation of the SpaceWire CEA IP is done ‘as it is’ and only few compiler 

directives shall be selected. The test set-up includes the Aerospace Development Kit 

(ADK) evaluation board dedicated to 

ATMEL space qualified processors 

and FPGAs with the ATF280 

mezzanine board plugged-in. The 

ADK hosting the SpaceWire CEA IP 

is connected to a PCI acquisition 

board (PCI
4SpW

 from Skylab – 

Toulouse). Specific software permits 

the sent and the reception of data to 

the destination node as well as to 

check the link status. 

 

Figure 3 – Test set-up 
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6. RESULTS 
Various configurations have been evaluated in the target FPGA. The first one consists 

in connecting the transmitter inputs (‘Tx’ block) to the receiver outputs (‘Rx’ block) 

as simply as possible (see figure 4-a). The second one consists in the implementation 

of a command decoder and a counter along with the IP. On reception of a ‘start / stop 

command’, the counter starts or stops counting and its current content is continuously 

sent back (see figure 4-b). This second configuration is more representative of real 

designs where the SpaceWire IP is supposed to interface with equipment specific 

functions (i.e. data processing). A third configuration was also tested (see figure 4-c) 

but results were not reproducible and therefore no result are reported in the present 

paper. 

Configuration 1 

Frequency 10 MHz 40 MHz 100 MHz 120 MHz 140 MHz 
Rx OK OK OK OK FAIL 

Frequency 10 MHz 30 MHz 40 MHz 50 MHz 100 MHz 
Tx  OK    

 
IDS report:  

 

 

 

 

Configuration 2 

Frequency 20 MHz 50 MHz 100 MHz 120 MHz 140 MHz 160 MHz 
Link connected OK OK OK OK OK OK 

Data received OK OK OK OK ERRORS NO DATA 

7. CONCLUSION 
These early results show promising performance of the SpaceWire CEA IP in the 

ATMEL ATF280 FPGA. Performance required for the ECLAIRs instrument – 10 

MHz links - is already satisfied. Further tests are on-going and unpredictable 

operation of configuration 3 will have to be understood.  

 

Figure 4-a: Configuration 1 

 

 -b: Configuration 2 

 

 -c: Configuration 3 

*********************************************** 

Device Utilization for ATF280E-MCGA472 

*********************************************** 

Resource                Used    Avail     Utilization 

----------------------------------------------- 

IOs                     9       308       2.92% 

Combinational Cells     576     14400     4.00% 

Sequential Cells        198     14400     1.38% 
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ABSTRACT 

The paper presents the architecture of the high performance prospective processing 

SoC with communication protocol SpaceWire as the Next Generation DSP Multi-core 

Processor for Onboard Payload Data Processing Applications.  

 

1 INTRODUCTION 

The DSP Multicore processor continues processors road map which begins 

from dual cores processor 0.25-um MC-24R ( from the “MCFLIGHT” chipset) for sig-

nal processing and control distributed architectures with SpaceWire interconnections 

that is produced by the “ELVEES” company (Moscow). The structure of the chip 

(Fig. 1), includes the following main components: 

 CPU - central processing unit based on the RISC-core and floating-point IEEE 

754 standard coprocessor (FPU);  

 DSP - multicore unit (from 4 up to 8 cores) for digital signal processing; 

 XRAM, YRAM - the DSP memory; 

 CRAM - CPU RAM;  

 CDB - CPU data bus;  

 MPORT - external memory port;  

 DDR_PORT0, DDR_PORT1 - ports of the DDR memory;  

 DMA -direct memory access controller;  

 OnCD - built-in unit for the programs debugging;  

 UART - Asynchronous serial port; USB Controller; I2C controller; 

 AXI Switch;  

 PLL - frequency multiplier based on PLL;  

 Ethernet 10/100 MAC-controller;  

 SWIC0, SWIC1 – standard Space Wire serial links controllers; 

 GigaSWIC0, GigaSWIC1 - Giga SpaceWire serial links controllers; 

 PMSC - PCI bus controller;  

 VPIN - video input port; VPOUT - video output port;  

 MFBSP® (Multi Functional Buffered Serial Port) – ELVEES s patented multi 

buffered serial port (SPI, I2S, LPORT, GPIO); 

 ICTR - interrupt controller; 
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 IT - interval timer; WDT - watchdog Timer; RTT - real-time Clock;  

 JTAG - debugging port. 
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Fig. 1   Block diagram of the Multicore signal microprocessor. 

Multicore signal microprocessors include the high-performance IP-cores 

(RISC-based CPU and DSP), embedded SpaceWire links and high throughput giga-

bits links, such, as sRIO, GigaSWIC® or and SpaceFibre. CPU core can be used on 

the base of any processor platform with an interface AXI (for example, RISCore32 ( 

MIPS32 architecture CPU) of the MULTICORE IP-platform libraries).  

As the DSP the new ELVEES 'DSP-configurations clusters from ELVEES' 

MULTICORE IP-core library can be used: QELcore-09™ DSP-cluster or OCTEL-

core-09™ DSP-cluster. They contain 4 or 8 programmable cores (Fig.2 and Fig.3) 

with fixed and floating point (ELcore-™ DSP-core family, Tabl.1). 

All  processors  in the chip operate independently of each other (each with its 

own program) and, therefore, represent a system-on-chip MIMD - architecture 

(MIMD - Multiple Instructions Multiple Data). 

The most important devices in the structure of the processor are intelligent di-

rect memory access (DMA) engines, which can provide mutual synchronizations, for 

example, GigaSWIC with DSP-cores.  

In this case are possible both options of the MIMD-organization:  

(A) CPU carries out the function of the general manager of the Executive pro-

grams, directs the DSP-cores and DMA devices, and the DSP-core is an 

intelligent accelerator operating on its own the program and having the 

SpaceWire Components

314



   

opportunity of independently initialization to implement its software. CPU 

has access to all processors resources. 

(B) CPU and DSP - cores both have access to the chip resources. DSP have 

access to the entire address space of the chip, including registers, DMA-

channels and peripheral blocks. With simultaneous access to the same re-

sources the priority is given to the CPU. 

2 DSP FEATURES 

ELVEES DSP-cores main features: 

- two 128-bit data memory accesses (X & Y) each cycle; 

- vector operations, scalable 1/8/16/32/64/128 bit data formats;   

- VLIW-type instruction set; 

- Fixed-point and floating-point (IEEE-754) operations; 

- Short (up to 7 phases) pipeline; 

- AMBA AXI external bus interface; 

- Non-Uniform Memory Access.  

Tabl.1 ELcore-хx
TM

  DSP-core family 

DSP- core Pipeline 

 

SISD/ 

SIMD 

Program 

memory 
Data  

memory 
Process,  

nm 

Clock,  

MHz 

Perform-

ance, 

MFLOPs 

Silicon 

proved 

ELcore-14 TM 
3  

1 4Kx32 36Kx32 
250 80 240 + 

ELcore-24 TM 
3  

2 4Kx32 40Kx32 
250 80 480 + 

ELcore-26 TM 
4  

2 4Kx32 16Kx32 
250 100 600 + 

ELcore-28 TM 
7  

1 8Kx32 32Kx32 
180 250 1500 + 

ELcore-30 TM 
7  

1 8Kx32 32Kx32 
130 300 1800 + 

ELcore-09 TM 
7  

1 8Kx32 32Kx32 
90 500 3000 - 

 

ELVEES’ DSP- cluster main features: 

 AMBA AXI external bus interface; 

 Non-Uniform Memory Access Architecture; 

 “Floating boundary”  of the data and program memory. 
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Tabl.2  ELcore-хx
TM

  DSP-cluster family 

DSP- cluster DSP- core Num-

ber of 

cores 

Program 

memory 
Data  

memory 

(NUMA) 

Process,  

nm 

Clock,  

MHz 

Perform-

ance, 

MFLOPs 

QELcore-28 TM ELcore-28 TM 
4 

4х 8Kx32 128Kx32 
180 250 6000 

DELcore-30 TM ELcore-30 TM 
2 

2х 8Kx32 64Kx32 
130 300 3600 

QELcore-09 TM ELcore-09 TM 
4 

4х 8Kx32 128Kx32 
90 500 12000 

OCTELcore-09 TM ELcore-09 TM 
8 

8х 8Kx32 256Kx32 
90 500 24000 

 

 

 

Fig.2. QELcore-09
 TM

 DSP-cluster block diagram 
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Fig.3. OCTELcore-09
 TM

 DSP-cluster block diagram 

DSP provides the Gflops or Bops level of the performance.  For example, 200 

operations in 16b format or 48 floating point (IEEE754, single format) operations are 

performed at the same time at one clock in the OCTELcore-09™ DSP-cluster.  

Therefore, necessary conditions for balancing of such a high DSP performance 

and data flows speed are:  

A) Presence of a large number of DMA on chip devices operating with DSP;  

B) Rapid channel exchanges with external devices - Giga SpaceWire serial 

links (GigaSWIC™). 

3 GIGA SPACEWIRE SERIAL LINKS 

It is important to implement the high-performance – high-rate and low latency, 

data transfer with low overheads and low power and area implementation costs. Gen-

eral purpose high-rate interconnections – Serial RapidIO, Infiniband, FibreChannel 

don’t fit this set of requirements. The SpaceWire technology has better characteristics, 

though its data rate could be not enough to support the DSP-clusters performance 

even with parallel processing logic clustering. Higher data rates are promised by 

SpaceFibre (in development). Another way here could be SpaceWire evolution to Gi-

gabit link rates. While forcing the existing SpaceWire link rates from 0,4 Gb/s in the 

standard (up to 0,6 – 0,8 Gb/s in some Russian and US implementations), with modi-

fication of the SpaceWire protocols low levels only, the rates of 2,5 – 5 Gb/s could be 

achieved in used for Multicore technologies. It uses 8b/10b coding and recoding of 

characters at the Symbol level. We call this modification Giga-SpaceWire, its control-

ler core - GigaSWIC. We don’t see reasonable to implement byte-level multilane 

links; packet level inverse multiplexing over multiple links looks more flexible and 

better in cost/performance space.  

Along with SpaceFibre technology development finalising correspondent 

SpaceFibre link controller will be designed and incorporated into Multicore DSP 

chips along with, or instead of, the GigaSWIC cores.  
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The developed Multi Core DSP and scalable number (2-4) of Space-

Wire/GigaSpaceWire/SpaceFibre links integrated on a System on Chip will enable the 

high performance on-board processing required for future missions. Integration of 

Multicore DSP chips into scalable multiprocessor systems is supported by direct 

DSP chips interconnection by SpaceWire/GigaSpaceWire links as well as routing 

switch chips for larger configurations with many DSP SoCs.  

DSP Multi-core processor SpaceWire links are supported by drivers in Linux 

that run on the prototype chips.  

4 CONCLUSION 

 The current project status: RTL code of the Next Generation DSP Multi-core 

Processor for Onboard Payload Data Processing Applications with GigaSWIC links, 

130nm engineering samples and 180nm 5-cores  DSP Multi-core Processor with 

SpaceWire links. The planned technology for SOC is 65 – 90 nm RAD HARD CMOS 

or SOI that will provide high efficiency (up to tens GFLOPs). The design and archi-

tecture must support Single – Event – Upset (SEU) fault-tolerance.  

Examples of distributed computer systems Multi-Ray Satellite Relay, Earth 

Monitoring with small Satellite Radar onboard radar images synthesis & compression, 

Codec for Multi – Media Standard H264/AVC and JPEG-2000 Image compression, 

Coder (Convolutional, Reed-Solomon) and Decoder (Viterbi, Turbo), which are based 

on the “MCFLIGHT” chips, illustrate scalable reference structures for distributed signal 

processing and real-time control systems with SpaceWire interconnections. 
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ABSTRACT 

A study of fault-tolerant on-board computers for satellite and payload control is 

described. The computer comprises duplicates of six different printed-circuit boards, 

for a total of 12 boards. Instead of using slow redundant buses such as 1553 or dual-

CANbus, the 12 boards are interconnected with multiple SpaceWire channels, four 

per board. A packet-switched network using One doubly-connected torus topology 

provides at least two mutually-exclusive paths from each board to any other board. 

1 INTRODUCTION 

Space computers, as well as other electronic payload assemblies, typically comprise 

multiple printed circuit boards, interconnected by means of a backplane, and packaged 

in a ruggedized box. An example is shown in Figure 1. Often, two copies of each card 

are included and two parallel buses are employed, enabling dual module redundancy 

(DMR) and increasing the resiliency and the tolerance of a single failure. 

Such systems, however, suffer of two key shortcomings. First, they are susceptible to 

multiple failures. Second, data rates of typical buses used in space applications, such 

as MIL-STD-1553 and CANbus, are too low for some applications. A novel system 

architecture, based on SpaceWire interconnect [1], is described in this paper. It 

enables higher data rates and offers an enhanced fault tolerance. The conceptual 

architecture is shown in Figure 2. The PCBs are still arranged linearly in a box, but 

the interconnect is based on multiple point-to-point SpaceWire cables arranged as 

shown in Figure 3. 

2 BUS-BASED COMPUTER ARCHITECTURE 

Figure 4 depicts a simplified single-bus architecture of a space computer, comprising 

five cards. A DMR version is shown in Figure 5, where each card is included twice in 

case one copy malfunctions. Usually, one or more of the cards manage the 

configuration and turn other cards on or off. At times, a dedicated reconfiguration 

management card is assigned with this task, and is constructed with internal 

redundancy to mitigate single point failures. 
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Figure 1: A typical seven-card standard format space computer 

based on backplane interconnect 
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Figure 2: The SpW Computer 

(ANA: Analog I/O controller, CODEC: 

Communication port, OBC: On-board 

computer, HPC: High performance computer, 

ACS: Digital I/O controller, Rtr: Router) 
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Figure 3: Cards arranged linearly in a box 
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Figure 4: A space computer 
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Figure 5: Duplicating all cards of the space computer for DMR 

The structure of Figure 5 is still susceptible to a single failure in the bus. More reliable 

buses are enabled, e.g., by the MIL-STD-1553 standard which requires dual redundant 

buses, as in Figure 6 (1553 can also be implement with triple redundancy). Another 

common alternative is CANbus, implemented in duplicate similar to 1553 buses, used 

in order to take advantage of CANbus compatible components and to avoid export 

restrictions associated with 1553 components. 

ACS ACS CODEC ANA ANA HPC OBC ACS ACS CODEC ANA ANA HPC OBC 
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Figure 6: Dual redundant bus (e.g. as in 1553) 

However, systems with dual buses are still sensitive to common failures. Indeed, a 

single module failure as in Figure 7 can be overcome thanks to the second copy of the 

failing card. However, the dual interconnect is more sensitive, because it is common 

to all units. If one of the two buses fails (Figure 8), the entire system is left with a 

single bus. Any additional failure on any of the ports, such as in Figure 9, may render 

the entire system unusable.  
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Figure 7: The DMR dual bus computer is resilient to a single module error 
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Figure 8: A single bus failure eliminates bus redundancy 
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Figure 9: A bus interface failure may disable the entire computer 
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The other factor characterizing bus-based architectures is bandwidth limitation. Both 

1553 and CANbus were designed mostly for the exchange of control data, rather than 

for the transfer of payload outputs or captured data. Both 1553 and CANbus are 

limited to 1 Mbit/s shared raw bandwidth, resulting in much lower effective sustained 

rates per node on the bus. 

Avionics full-duplex switched Ethernet (AFDX) and various derivatives (ARINC) 

have been introduced as alternatives for aerospace applications. However, due to 

complexity and insufficient rates (about 1-2 Mbit/s at most), their use has been limited 

thus far. For high data rates, Ethernet requires special PHY components that 

complicates its application as a replacement for inter-board communications such as 

1553 and CANbus.  

3 THE SPW COMPUTER ARCHITECTURE 

SpaceWire has been proposed as a high speed point-to-point link that enables creating 

redundant networks for replacing slow and fault-sensitive bus architectures [1]. The 

architecture of Figure 2 takes advantage of SpaceWire as the physical and data-link 

layers of a packet-switched network for use in multi-PCB computers. In addition to 

the 10 nodes of Figure 5, two extra routers are added, to increase connectivity within 

as well as outside the system. In packet switched networks, packets may have to pass 

through several intermediate nodes before arriving at its destination, and the 

intermediate nodes serve as routers or switches, merely passing the packet onward 

without affecting its contents. As common in such networks, upper layers of the 

network need to provide for routing, flow control, end-to-end control, reliability, 

retransmission, load balancing, configuration management in case of failures, and so 

on. 

The network employs a doubly-connected torus topology (Figure 10, left). Each node 

is connected via four bi-directional ports, and every packet could be routed over any 

of the ports, creating redundancy of possible routing paths. A single node failure 

(Figure 10, right) results in shut-down of all four links incident upon the failing nodes; 

however, all other nodes remain connected. 

A failure of one link causes it to disconnect without affecting the two end nodes 

(Figure 11, left). As above, such failure does not affect the functionality and 

availability of the system. In fact, many nodes and many links may malfunction and it 

is likely that the system will continue to perform its function, as demonstrated in 

Figure 11 on the right.  
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Figure 10: SpW computer (left)  after one node failure (right) 

Such a network-based computer systems can benefit from a multi-purpose computing-

and-routing component as shown in Figure 12. Aeroflex Gaisler GR712RC is a 

system-on-chip (SoC) integrating two LEON3FT processor cores, large on-chip RAM 

and six SpaceWire ports, two of which implement the SpaceWire Remote Memory 

Access Protocol (RMAP, [2][3]). A typical board of the SpW computer (Figure 13) 

employs two copies of the SoC, one as the SpaceWire router and the other as either a 

main computer or as a controller managing other components on the board as well as 

external peripherals. The two RMAP ports of the router chip, as well as two other 

SpaceWire ports, make the four network connections. The remaining two ports can 

connect to the other processor chip (Figure 13) or to peripherals outside the SpW 

computer (Figure 14). 
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Figure 11: SpW computer after one node and one wire failures (left) and after a maximal number 

of failures that still allow operation (right) 
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Figure 12: Aeroflex Gaisler GR712RC SoC with six Spacewire ports  

can serve as a router, computer, or controller 
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Figure 13: Aeroflex Gaisler GR712RC SoCs serving as routers receive their code over RMAP 

links, use the on-chip memory and do not require local PROM or RAM chips.  

Router Processor boards may send code to other boards over RMAP SpW links.  

Controller boards may receive code over RMAP links, similarly to the routers 
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Figure 14: One or two SpW links of the router chip may be used for external links  

to/from outside the SpW compuetr 

The advantage of RMAP ports is the ability to initialize the entire system from a 

single point (or two alternative points, for redundancy) as suggested in Figure 15. 

Thus, the network serves not only as a means of transferring data and control, but also 

to initialize, manage, test and repair itself. 
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Figure 15: Only two boards in this SpW computer carry PROM code  

and distribute the code to all other boards (routers and controllers) via RMAP SpW links 

SpaceWire links are typically designed to support up to 400 Mbit/s, providing a much 

higher bandwidth than any of the older buses described above. Given that in a 

network many (or even all) links may transfer data in parallel, the effective total 

bandwidth in the network described here is manifold higher than the bandwidth 

available in, for instance, the system of Figure 6. Even the scaled down network of 

Figure 11 (right) can deliver total combined bandwidth in excess of 1 Gbit/s. The 

actual bandwidth is typically limited by the software and by the architecture of the 

individual network nodes rather than by the network. 

4 SUMMARY 

The paper presents a SpW computer capable of high bandwidth and high level of fault 

tolerance. A doubly-connected torus topology offers a simple approach to the design 

of multi-PCB computer systems for space applications, and eliminates the need for 

older, slow fault-tolerant standard buses such as 1553 and CANbus. 
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ABSTRACT 

This paper introduces a SpaceWire Active Backplane (SpWAB) specification that is 

based on a design developed for the Modular Architecture for Robust Computing 

(MARC) project demonstration system [1].  The specification is based upon a 

modular architecture and incorporates facilities to support “Hot swapping” and “Plug 

and Play” system integration and test approaches. 

The paper details the network and power architecture, the electrical interfaces and the 

potential connector design that will carry the high speed SpaceWire signals with 

controlled impedance between modules. 

The developments required to permit realisation of the standard within a space 

environment are identified as well as a suggested physical configuration for the 

system Modules. 

1 INTRODUCTION 

The SpWAB specification [2] offers a communication and power distribution 

backplane interface that permits spacecraft units to be built from “Modules”.  The 

modules may include functions such as control processors, mass memory and 

Input/Output modules, potentially from different suppliers, that have a high level of 

capability. An example system is shown in Figure 1 which shows a reference 

distributed Data Handling and processing architecture [3]. 

The SpWAB interface to the module is comprised of redundant SpW interfaces and 

switched power.  The module SpW interfaces are connected together via SpW routers 

that are part of the SpWAB, this configuration has the advantage that the network 

architecture is decoupled from the module design and the SpW connectivity is 

maintained even if individual modules have failed or have been intentionally powered 

off.  The switched power interface permits any module to be turned off when not 

required, conserving power and increasing the module reliability. 

The SpWAB permits a decentralised architecture system based on a SpaceWire 

network as a communication medium. It is anticipated that this decentralised 
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architecture will allow efficient resource sharing (e.g. computing, signal processing, 

mass memory, etc.) among spacecraft payload and platform functions. 

 

Figure 1: Distributed data handling and processing architecture 

2 SPWAB NETWORK AND POWER ARCHITECTURE 

The context of the SpWAB is shown in Figure 2. Power is supplied to the SpWAB 

and the Modules from nominal and redundant Power Supplies. Modules “1 to N” have 

identical interfaces to the backplane, while two master Reconfiguration Modules 

incorporate additional signal lines for power switch control. 
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Figure 2: SpWAB context within an example Spacecraft Electronics Unit 

The master Modules each incorporate a hardware based Reconfiguration Controller 

that handles the highest level of Failure Detection Isolation and Recovery (FDIR) 

within the unit. The Reconfiguration Controller performs autonomous power 

switching in response to an internal system watchdog timeout. In a normally operating 
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system the system watchdog is held off by SpW health (heartbeat) messages from one 

or more Modules. It is anticipated that the master Modules will incorporate either a 

Telemetry and Telecommand (TMTC) interface or an interface to a unit that is at a 

higher level in the spacecraft system FDIR hierarchy. 

2.1 NETWORK ARCHITECTURE 

The SpWAB network architecture is based on a Cluster (Figure 3) that incorporates 

two 8 port SpW routers to provide a simple network building block with built in path 

redundancy.  The regularity of the network architecture simplifies the network 

discovery process needed to support a “Plug and Play” system. The Modules are 

identified based on the router ports that they are connected to and the Cluster number.  

This identification convention means that the network paths between two modules can 

be easily deduced. This SpWAB network can be expanded to support any number of 

Modules by increasing the Cluster count and it provides expansion port connections to 

other Spacecraft units or to Electrical Ground Support Equipment during testing. 
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Figure 3: SpWAB network architecture 

2.2 POWER ARCHITECTURE 

Each Module is powered from both the Nominal and Redundant DC power rails 

which are combined via series/parallel diodes plus a Latching Current Limiter (LCL) 

for failure protection (Figure 4).  The SpWAB routers are not shown in the diagram 

for clarity but each one is powered via a Point of Load DC-DC converter and may be 

switched on/off individually via LCLs. 
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Figure 4: SpWAB Module power switching architecture 

2.3 MODULE INTERFACES 

Each Module is connected via 2 SpW ports to the SpWAB.  No discrete signal lines 

are provided thus all module communication is via the SpW network. A module may 

have further interfaces, for example at the front panel, however these are not routed 

via the SpWAB. 

Two SpW interfaces are required for redundancy reasons so the full functionality and 

performance of a module must be available if one of the SpW ports to the network 

fails.  The module must be designed to prevent propagation of failures through the 

SpW interfaces by, for example, providing over-voltage protection on the internal 

power supply rails [4]. The Module should be compatible with the RMAP protocol for 

health monitoring and any basic control functions.  To permit control by multiple 

users each RMAP control function should be accessed via atomic read/modify/write 

operations.  To facilitate “Plug and Play” the module should map identification 

information into a fixed area of address space. 

The module receives a single Latching Current Limiter protected rail.  It is anticipated 

that the supplied voltage will be in the range 12V to 24V, with the lower voltage 

being preferred to simplify the design of low output voltage the Point of Load DC-DC 

converters accommodated on the Module. 

3 SPWAB CONNECTORS 

Currently there are no space approved backplane connectors that provide a controlled 

impedance interface.  Options are to either, characterise an existing connector and 

incorporate appropriate compensation components or, to design a new connector 

using controlled impedance contacts. The proposed solution for the SpWAB is to 

develop a new pair of mating connectors in co-operation with Hypertac, the 

connectors being based on existing Twinax contacts and built in a Hypertac HPH 

form factor connector body.  The Twinax contacts can operate at data rates in excess 

of 1Gbps and hence can handle the higher data rates that will be required for future 

space applications. A portion of the proposed connector contains standard contacts for 
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power and control signal distribution.  Support for “Hot swapping” could be provided 

by incorporating different length pins to force removal of power upon card extraction 

and to ensure that the ground connection breaks last. 

 

Figure 5: Proposed design of the SpWAB to Module connectors 

4 MODULE PHYSICAL CHARACTERISTICS 

There are no “standard” sizes for electronics circuit boards used in space applications. 

Spacecraft unit suppliers tend to optimise the board size for each application and 

produce a unit as a cube shaped box for structural, thermal and mass efficiency 

reasons.  Clearly if Modules from different suppliers are to be integrated together 

within a unit then a standardised packaging scheme is required and the SpWAB 

specification needs to incorporate physical as well as functional and electrical 

interface constraints on the Module. 

Eurocard board sizes are commonly used in the development of ground based 

electronic systems and card frames are readily available.  The “Single Eurocard” size 

(100mm x 160mm) is considered too small to accommodate the components are 

required for a processor card based on the typical IC packages available in the space 

domain. The “Double Eurocard” (233mm x 160mm) is a more practical size but the 

aspect ratio leads to tall units compared to the depth. In consideration of these factors 

the “Extended Double Eurocard” (233mm x 220mm) is the selected card size for the 

SpWAB module specification. 

 

Figure 5: Example module design based on Extended Double Eurocard size 
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5 REQUIRED DEVELOPMENTS 

To build the SpWAB as envisaged to a flight standard and permit the required 

components to be accommodated efficiently on the backplane three principal 

developments need to be undertaken: 

1. Development of compact Point of Load converters incorporating over-voltage 

protection. 

2. Develop small Latching Current Limiters with isolated redundant switch 

controls and possible means to monitor the current. 

3. Develop a connector with a mix of controlled impedance and standard contacts 

that can support at least two SpW links and possibly facilities for “Hot 

Plugging”. 
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ABSTRACT 

This paper describes the evolution of the Modular Architecture for Robust Computing 

(MARC) demonstration system from the initial design requirements to the developed 

and tested system hardware.  The key design decisions to achieve the modular 

SpaceWire and power distribution network architectures are described with the 

supporting rationale.  The network and power architectures are based on established 

spacecraft redundancy concepts and provide tolerance to single point failures.  The 

MARC hardware has been tested and the capabilities, facilities and test results are 

summarised. 

1 INTRODUCTION 

The Modular Architecture for Robust Computing (MARC) [1] demonstration 

hardware is a modular processing system for implementing spacecraft payload and 

platform avionics.  
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Figure 1: MARC demonstration system 
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MARC employs a distributed hardware architecture incorporating modules that are 

interconnected by a SpaceWire network; this design simplifies resource sharing (e.g. 

computing, communication network, memory, etc.) amongst the payload and platform 

functions. The main applications foreseen for this architecture include missions 

requiring extensive distributed fault-tolerant on-board processing capabilities, such as 

advanced payload data processing systems and highly autonomous space exploration 

systems. 

A SpaceWire Active Backplane (SpWAB) [2] provides the network connections to 

support a set of Modules.  The network can be expanded to support additional 

Modules or to meet the performance requirements for a particular mission.  The SpW 

interfaces implemented in the MARC system modules use the recently released ESA 

RMAP IP Core [3] and the SpWAB uses the Atmel AT7910E 8 port router. 

The reliable computing resource in MARC is provided by two Core Computing 

Modules (CCM) based on the Atmel AT697F processor.  The hardware is designed to 

support the software architecture and the services based on the Spacecraft Onboard 

Interface Services (SOIS) standards.  

2 MARC SPW NETWORK ARCHITECTURE 

There are a variety of classical network architectures that were considered for the 

SpW network as illustrated in Figure 2.  In this diagram the green spots could 

represent either a functional Module or a router. Any of these architectures could be 

adopted however each has advantages and disadvantages in differing applications. 

 

Figure 2: Classical network architectures 

Single Point Failure (SPF) avoidance requires each MARC Module must connect to 2 

independent routers, thus a modular network building block can be created that is 

naturally composed of 2 routers. In the MARC system this building block is called a 

“Cluster” and larger networks can be created by linking clusters (Figure 3).  In 

principal the clusters may themselves be linked together in a variety of architectures, 

for example each green spot in Figure 2 could represent a Cluster.  Within spacecraft 

practical considerations normally limit the number of Modules that need to be 

supported and so the simple redundant bus network architecture adopted for MARC is 

adequate. To support spacecraft integration and test activities spare ports are available 

to interface with Electrical Ground Support Equipment (EGSE).  Additional spare 

ports are provided to connect to other external functions. 
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Figure 3: MARC demonstration system Cluster based SpW network architecture 

3 FAILURE DETECTION ISOLATION AND RECOVERY 

Failure Detection Isolation and Recovery (FDIR) autonomy is essential for space 

missions, in particular where recovery has to be performed without ground 

intervention. This is implemented by a combination of hardware and software [4].  

The FDIR hardware element within MARC is the Core Hardware Reconfiguration 

Controller (CHRC), this is responsible for ensuring that key SpWAB routers are 

powered and that at least one master CCM is running. The correct functionality of the 

master CCM and the FDIR Manager Software running within it is indicated to the 

CHRC by regular SpW heartbeat messages that reset a watchdog timer in the CHRC. 

The objective of the CHRC FDIR action is to power a master CCM with a working 

communications path to the CHRC. If the CHRC fails to do this successfully it will 

flag the problem to the ground operator via a connection with the Telemetry and 

Telecommand sub-system. 

4 POWER DISTRIBUTION ARCHITECTURE 

It is anticipated that during a mission the MARC system will be operated in a variety 

of configurations that employ a subset of the available routers and Modules, this 

means that each router and each module must have an independent power switch.  

These power switches are controlled by the CHRC to permit the hardware controlled 

FDIR actions to be accomplished either automatically or by telecommand. To 

mitigate against SPFs the power distribution architecture must be comprised of 

Nominal and Redundant power feeds with over-voltage and over current protection 

[5]. The derived MARC power distribution architecture is shown in Figure 4. 
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Figure 4: MARC demonstration system power distribution and control architecture 

5 MARC DEMONSTRATION RACK AND TEST RESULTS 

The MARC demonstration hardware (Figure 5) was completed and tested in 2009, it 

comprises: 

 A 9U case and 6U card frame 

 A SpW Active Backplane 

 One Core Hardware Reconfiguration Controller Module 

 Two Core Computing Modules 

 Two Mass Memory Modules 

 Four spare Module slots 

 Rack power supplies 

The ESA RMAP IP Core has been implemented in Actel ProASIC 3 devices and 

operates at 100Mbps (180Mbps maximum predicted by design tools). 

The MARC Rack has been tested and is fully operational.  The measured power 

dissipation figures are listed in Table 1. 
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Figure 5: MARC demonstration system 

 

Table 1: Power dissipation of the MARC demonstration system 
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Now SpaceWire technology actively introduce in modern computing systems (CompS) - 

control systems (ContrS) and systems of the information processing (SIP) of onboard complexes 

of aircraft and spacecraft applications. 

In structure of any computing system it is possibly to allocate an input-output subsystem, 

a subsystem of switching (information transfer) and a data processing subsystem. Also in the 

computing system it is separately possible to allocate a subsystem of management which is the 

integral component of all above-named subsystems.  

Let's consider an example of structure of multimachine system of the information 

processing (MSIP), presented on drawing 1.  

 

Drawing 1. 
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MSIP consists of 4 subsystems:  

• A subsystem of reception of the information (SRI); 

• A subsystem of delivery of the information (SDI); 

• A subsystem of switching of the information (SSI); 

• A subsystem of processing of the information (SPI). 

CM - the computing module, 

DPPS - the digital processor of processing of signals, 

RI - the receiver of the information, 

IT – the information transmitter, 

COM – Commutator. 

The information transfer, defining work mode and a state of receivers, transmitters, 

switchboards and processors is direct action of management subsystem.  

Frequently the subsystem of management, a processing and information transfer 

subsystems are constructed on the basis of different interfaces and data transmission protocols. 

Design of universal architecture of multiprocessors system, in which processing and information 

transfer subsystems and a management subsystem are based on one interface and the protocol of 

high-speed consecutive data transmission, will allow to reach on qualitatively new level of 

multimachine systems design. It will allow:  

1. To Increase the general productivity of system at the expense of use of high-speed Space 

Wire interface in all communication network;  

2. To Reduce time of development of hardware maintenance of system at the expense of use 

at all levels (modular, block, system) the same element base and identical logic and physical 

principles and design methods; 

3. To Simplify and accelerate a development cycle of the general software of system since 

for transfer of the processed information and the control information is used the same protocol;  

4. To Simplify testing and system adjustment. 

One of current works in Scientific Research Institute  "Submicron" is development of 

such system on the basis of SpaceWire standard. The basis of this system is the components of 

Scientific Production Center "Elves": signal microcontrollers of the “Multicore” series - 

MC24RT2, consist of two SpaceWire ports, and a integrated circuit of the switchboard of 

SpaceWire interface on 16 ports - MCK-01. 

Let's consider block diagram CM which is used for SPI construction. The Block diagram 

is presented in drawing 2. 
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Drawing 2. 

All four processors MC24RT2 in CM are connected to switchboard MCK-01 with 

SpaceWire. The controller exercising data control CM (System controller), also is connected to 

switchboard MCK-01 with SpaceWire. Two ports of the SpaceWire switchboard are connected 

to sockets for communication CM with SSI. Тhus it is visible that switching between of 

processing information processors, switching of a subsystem of management, and also 

communication CM with SSI is carried out by one data transmission interface – SpaceWire. 

The criteria of fault tolerance put in system, allow it to resist effectively to failures and 

faults (including to hostile faults) and to carry out detection and identification of appearing 

faultiness, to carry out reconfiguration at definition of the fault knot, and to carry out safe 

interrupt systems at impossibility to correspond to the set criteria of fault tolerance.  
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ABSTRACT 

In this paper, we propose a real-time extension scheme for SpaceWire. We designed 

and implemented the proposed real-time SpaceWire function on a Dependable 

Responsive Multithreaded Processor I (D-RMTP I) SiP (System-in-Package) for 

parallel/distributed real-time control, and evaluated the basic performance of the 

proposed SpaceWire network. 

 1. Introduction 

In real-time systems, every real-time task has a time constraint including a deadline 

or a cycle. The time constraint is guaranteed by real-time scheduling algorisms. 

Almost all real-time scheduling algorithms for single/multi-core processors are based 

on pre-emption and the estimation of the worst-case execution time (WCET)[2]. 

Distributed real-time scheduling algorithms are being investigated by extending these 

algorithms. Here, pre-emption is achieved by context switches in processors. In order 

to employ the distributed real-time scheduling algorithms, networks are also required 

to be pre-emptive. Pre-emption on the networks can be achieved by overtaking 

prioritized packets at each node. Hence, we propose a packet overtaking scheme for 

SpaceWire [1].  

The WCET, which is one of the most important requirements for real-time 

scheduling algorithms, is estimated by analyzing a program in non-distributed systems. 

In distributed systems, the estimation of the worst-case network latency is also 

required. The network latency depends on the size of a packet. Since the size of 

packets is not fixed on a SpaceWire network, we divide a SpaceWire packet into fixed 

size flits. Pre-emption of packets and the estimation of the worst-case network latency 

are realized by overtaking prioritized packets and the fixed size flits respectively, so 

that distributed real-time scheduling algorithms [6][7] especially for Responsive Link 

[5], which is the ISO/IEC 24740 real-time communication standard, can be applied to 

the SpaceWire with our proposed scheme.  
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We designed and implemented the proposed SpaceWire on a Responsive 

Multithreaded Processor [3], which is a system-on-chip for parallel/distributed real-

time control, and evaluated the basic performance of the proposed SpaceWire network. 

2. Real-Time Communication 

Many real-time schedulers, based on classical Earliest Deadline First (EDF) and 

Rate Monotonic (RM) algorithms [4], have been proposed. Most real-time operating 

systems based on such real-time schedulers pre-empt and execute tasks in order of 

priority at every tick. Figure 1 shows a sample scheduling based on the EDF. The 

scheduling policy of the EDF is that earlier the deadline, higher the priority. 

 

Figure 1  An EDF sample schedule 

Pre-emptive processing (context switching) is required to realize real-time 

processing. Similarly pre-emptive communication that requires packet overtaking is 

needed to realize real-time communications. Therefore our goal is to realize a real-

time communication architecture that can optimally do packet overtaking on 

SpaceWire, so that each control node can send and receive packets with suitable 

priority given by the real-time schedulers. 

3. Packets Overtaking Scheme 

We propose a packet overtaking scheme to realize pre-emption on a SpaceWire 

network. First we add a priority field to a routing table of SpaceWire. Figure 2 shows 

a routing table format for proposed real-time protocol. The routing table consists of a 

logical destination, a physical output, and a priority. The priority is used for packet 

overtaking which is realized by SpaceWire router switches with prioritized virtual 

channels.  

Logical destination Physical output port priority

1

2

3

…

1

… …

10

22

8bit

3

4 1

 

Figure 2 A routing table format with priority 
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Almost all real-time scheduling algorithms assume the known WCET. The network 

latency depends on the size of a packet and its blocked time. Since the size of packets 

is not fixed on a SpaceWire network, we divide a SpaceWire packet into fixed size 

flits that are control codes and data characters.  We define a new control code in order 

to divide a packet for packet overtaking. Figure 3 shows a real-time control code 

format. 

1P 1 1 1 T0 ・・T１ T50 1 1
 

Figure 4 A real-time control code format 

Figure 4 shows a packet overtaking scheme in a SpaceWire router switch. If a packet 

is overtaken in the midstream of a packet, the control code for the high priority packet 

is added to the head of the high priority packet. After transferring the high priority 

packet, the control code for the low priority packet is added to the head of the low 

priority packet, and the low priority communication restarts. The SpaceWire router 

switch keeps the destination address of the pre-empted packet to transfer the packet.  

Even if a low priority packet is divided by a high priority packet, the low priority 

packet that consists of discontinuous flits can be sent to the correct destination node. 

 

 

Figure 4  A packet overtaking scheme 

Figure 5 shows prioritized router architecture for a real-time SpaceWire network. 

Since a low priority packet can be divided into a few groups of flits due to the flit-

level pre-emption based on priority in the real-time SpaceWire network, a mechanism 

that merges the divided packet that consists of the groups of flits into the original 

packet is required. In case of flit-level pre-emption based on priority, when a router 

restarts sending a low priority packet that was pre-empted by a higher priority packet 

to the corresponding virtual channel of the next router, the virtual channel should be 

specified correctly. In order to solve this problem while keeping compatibility of  

SpaceWire networks, our real-time SpaceWire scheme uses a control code of the 

SpaceWire protocol for flit overtaking. The proposed real-time control code indicates 

the correspondence relation between the virtual channel of the current router and the 

virtual channel of the next router. When a pre-emption occurs at a router, the router 
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switch generates a real-time control code for the high priority packet, and the router 

switch sends the real-time control code to the next router. Then the router switch 

sends the flits of the high priority packet. At the same time, the router controller 

generates a real-time control code for the low priority packet that also indicates the 

virtual channel of the low priority packet of the next router. The real-time control 

code for the high priority packet is sent to the next router and switches the virtual 

channel of the next router correctly. Specifically the high priority packet is buffered to 

another virtual channel for the high priority packet at the next router. When the router 

switch finishes sending the high priority packet, the router restarts to send the low 

priority packet. At this time, the real-time control code for the low priority packet that 

indicates a restart of the low priority packet is sent to the next router to switch the 

virtual channel correctly. Communication of the low priority packet restarts, so that 

the low priority packet is sent and buffered to the reserved virtual channel for the low 

priority packet at the next router. 

 

 

Figure 5 A prioritized router 

 

4. Implementation 

We have implemented the proposed SpaceWire router switch in the Spartan3e FPGA 

on the D-RMTP I (Dependable Responsive Multithreaded Processor I) SiP (System-

in-Package) as shown in Figure 6. The D-RMTP I SiP, which size is 3x3cm, 

integrates the D-RMTP I, four DDR SDRAMs, two flash memory chips, Ethernet phy, 

an FPGA (Spartan3e), etc. The D-RMTP I, which size is 10 x 10mm, is a SoC 

(System-on-Chip) for distributed real-time control, which integrates a real-time 

processing core (RMT PU: 8-way prioritized SMT with 2D vector units), SRAM, 

DDR SDRAM IF, PCI-X, SPI, IEEE1394, Ethernet, PWMs, encoders, UART, etc 

into an ASIC chip as shown in Figure7. All D-RMTP I functions except the 

SpaceWire router switch are integrated into the D-RMTP I chip. The FPGA 

(Spartan3e XC3S500E) is exclusively used for the SpaceWire router switch, so that 

the protocol of the real-time SpaceWire can be changed easily. 
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Figure 6 Photo of D-RMTP I SiP 

 

Figure 7 Block diagram of D-RMTP I SiP 

 

5. Evaluation 

 We implemented the SpaceWire router switch written by Verilog HDL on the 

FPGA. We evaluated the SpaceWire network by RTL simulation using NC-Verilog. 

Figure 8 shows a network topology for the evaluation. Each node generates 64-byte 

packets, which destination addresses are changed at random, under random uniform 

traffic. The average latency of packets and the maximum latency of packets were 

measured, while the network utilization was changed. 
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Figure 8 Network topology 

Figure 9 shows a basic preliminary performance of the proposed SpaceWire network, 

which shows a network latency without priority. While the network utilization 

becomes higher, the average latency of a packet does not increase so much, but the 

maximum latency of a packet increases.  

 

Figure 9 Network latency (base line) 

         

6. Conclusion and future work 

We proposed a real-time extension scheme for SpaceWire. We designed and 

implemented a packet overtaking function for real-time SpaceWiare networks. We 

designed and implemented the proposed SpaceWire router switch on the D-RMTP I 

SiP for parallel/distributed real-time control. We evaluated the basic performance of 

the proposed SpaceWire network. Now we are going to measure the real-time 

performance of the proposed real-time SpaceWire network, including the maximum 

latency and the average latency of each priority packet by RTL simulation. We will 

also measure them by using several D-RMTP I SiPs connected by the proposed 

SpaceWire network. 
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Abstract :  

Data traffic gets more and more heavy and complex, mainly due to performance enhancement 

of payloads. The SPACEWIRE standard usage covers the growing need of high speed board-

to-board communication links. This requires new tools providing efficient help in conception, 

development and validation of flight network designs. This paper presents a simulator 

dedicated to embed SPACEWIRE networks, taking into account all communication layers, up 

to constraints induced by nodes’ behavior. 

1. INTRODUCTION: 

The article covers the development and set-in-use of a first validated version of a 

SPACEWIRE traffic simulator, intended to support Space missions.  

Use cases have been selected, covering the various domains: exploration, LEO missions, 

robotics, interplanetary for main ones. 
 

2. DEVELOPMENT OF A REPRESENTATIVE SIMULATION TOOL: 

2.1 Development history: 

When SpaceWire standard started to be the privileged solution for high rate communications, 

it appeared that classical validation means as bus monitoring, line analyzer or any other SW 

based tools were not adapted to SpW based networks, multiple point-to point links requiring 

too many measurement points. Furthermore, the traffic becomes more complex, taking 

advantage of much higher data rates. This led to specify and start the development of a 

representative tool making and executing numerical models of SpaceWire networks, where 

each exchange can be observed.  

 

A study simulator called MOST (Modeling Of SpaceWire Traffic) has been first developed 

by TAS-F in year 2006, based on OPNET toolkit dedicated to network modeling.  

The present version of the simulator proposes a library including the ESA SpW router, 

generic nodes, generic application models (Producer/Consumer). 

Many features of the standard are implemented, including all basic SpW protocol (flow 

control, communication opening sequence, time-code, logical and physical addressing, local 
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buffering …) and upper layers like are GAR mechanism and RMAP protocol (Remote 

Memory Access Protocol) as described in ECSS-E-50-51. 
 
MOST has been developed with respect to requirement to be an opened and living tool. An 

incremental development has been applied, each step enriching the simulator by modeling 

new SpaceWire features and appending SpW component. 

In addition, MOST provides user with ability to insert functional behavioral models of nodes, 

without impacting standard SpaceWire models. A specific documentation is available for 

users in the form of manuals, each dedicated to the role of developers (product maintenance, 

models developers and network designers). 

2.2 Concept: 

2.2.1 Objectives of the simulator: 

SpaceWire networks are much more complex than data bus or single node-to-node serial 

links, such that hand-made analysis or classical traffic analyzers are no longer adapted. 

Hence, the main goal is to have a representative validation tool dedicated to SpaceWire 

Network, aimed at supporting system and design activities in all phases of a project, from 

phase-A (i.e. pre-developments, trade-off) up to operational mission life (maintenance, 

ground investigations), by providing mean: 

 To create quickly a numerical model of networks topology,  

 To decrease design risks and secure planning, by early verification,  

 To Keep control on traffic load, globally and in all parts of the network, 

 To identify weak parts of the network topology, 

 To verify load margins and transfer performances, 

 To evaluate/refine budgets of resources, meeting system specifications, 

 To verify the network FDIR by injecting simulated failures, 

 To replay anomaly cases observed as test scenario, 

2.2.2 Description: 

Built upon the OPNET 

toolkit, a SpW library is 

provided, with validated 

up-to-date models of SpW 

parts (routers and nodes).  

Components models are 

fully representative of the 

SpaceWire standard and of 

space qualified components 

of the market (i.e. ESA 

router, nodes), based on 

data sheets of suppliers.  

 
Figure 1: Standard model of router with time-code 

The traffic simulation covers all layers of communication, starting with transfer of characters. 

It covers all standard features: flow control, time-out, time code, physical or logical 

addressing, GAR mechanism … up to application. Default applications are provided for 

nodes, based on simple data generation and consumption models.  
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MOST takes advantage of the OPNET Man Machine interface, to propose an easy and natural 

way to build custom networks. The nominal way to do it is to build components instances via 

a drag-and drop selection mechanism, then to link then together with wires as stated in 

mission design, and finally configure attributes of these links.  
 
Once drawn and configured, scenarios are executed, recording standard or user-defined 

statistics, which can be drawn after execution in different ways. All or part of traffic can be 

observed, per wire and direction. Figure 3 represents the detailed traffic between 2 end users. 

The X axis drawing is time representative. Width of busy periods represents the duration of 

character transmission. 
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Figure 2: Network matching Traffic pattern of next figure 

 

 
Figure 3: Graphical representation of traffic (node  router1 router2  router3) 

The simulator is also required to cover anomaly cases, where numerical model is the unique 

way to check these unexpected events. To do so, pre-defined anomalies can be injected within 

scenarios simulating traffic loss, dumb node, erroneous characters, endless messages … 

2.3 Two kinds of end users 

2.3.1 Node Model Developers 

These people are in charge of development of customized nodes. This work consists in 

replacing default applications by representative behavioral models of nodes. The standard part 

of models is not affected by these developments. 

The developments are led under OPNET environment, using OPNET state machines and C 

language. A specific user manual is intended to model developers. 
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2.3.2 Network designers 

They are in charge of implementing network designs by using the graphical editor, picking 

building blocks in library, linking them by drag-and-drop interface.  

 

Then, they affect the attributes of blocks with mission values. At that time, they are ready to 

run scenarios. A specific user manual is intended to network designers. 

2.4 An open tool: 

2.4.1 Evolution (adding / enhancing components): 

Upgrade of the simulator can be done at several levels: 

 Evolutions of the standard can be easily inserted, due to the layered and structured 

modeling approach (sender, transmitter, router function, time-code generator and 

others are clearly identified and separated bricks within models. Furthermore, 

transport layer is clearly separated from the protocol and upper application layers. 

 New components can be added, using a building blocks approach (bricks re-use).  

 New protocols can be easily added, by switching bricks on the dedicated layer. 

 

This task is under responsibility of the development team in charge of maintaining the generic 

SpaceWire simulation tool. 

2.4.2 Customization to mission: 

Mission designers can build their network topology, configuring all links, but also: 

 Nodes models let users customize application behaviors, introducing data generation 

and consumption models.  

 Custom models can be enhanced anytime, such to follow evolutions of the embedded 

design (incremental approach, refining models). 
 

 

 

 

Figure 5: Node is 

composed of a 

standard part and 

a customized 

application 

Figure 4 : MOST process 
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Figure 6: Architecture of node matching 

concept of Figure 5 

Node models can be created such to 

represent a board function: computer, mass 

memory, instrument, or any other platform 

or payload unit. Models can be re-used in 

other missions (library is enriched each 

time). This task is realized in OPNET 

layered environment (see Figure 7), under 

responsibility of Node Model developers. 

Custom statistics can be defined, attached to 

these models to be selected at simulation 

time.  
 

 
Figure 7: OPNET design layers  

2.5 Simulator usage: 

The objective of the simulator is to experiment and verify 

network designs, by executing mission representative 

scenarios of traffic load. When the network topology is 

specified, the designer builds the network model, picking 

the components in the SPACEWIRE library (including 

custom nodes) and connecting them by using the 

graphical editor.  

 

Each network item (node, router and links) can be parameterized, setting values in a pre-

defined set of attributes (data rates, routing table, buffer sizes etc …). 

Figure 8: SpW network topology (example) 

The network model can then be experimented within various scenarios, simulating activities 

of nodes as sources of traffic. This task is under responsibility of the Network designer. 
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2.6 Expected Results: 

At execution time operators select which statistics 

will be logged. 

Traffic analysis and resources consumptions are the 

main issues of simulation sessions, such to show 

margins, traffic jam or data loss, effects of anomalies, 

memory consumption or any other custom statistic 

attached to specific nodes. 

The drawings, created from recorded results, either 

represents macroscopic statistics or accurate traffic.  

Reporting helps designer in verifying the protocol 

efficiency, the design performance and margins, in 

refining budgets and identifying slowing sources.  

  Figure 9: statistics drawing example 

An advantage of the simulator is its ability to restitute the traffic of any part of the network, 

even in contingency cases, which is impossible on actual HW. 

 

Main Benefits are: 

At design level: 

 To Keep the complexity of SpaceWire traffic under control, by an accurate modeling, 

 To get a quick return on design weakness or risks, identifying critical items, 

 To verify margins and performances, 

 To evaluate resources budgets (buffer sizes). This can be done by 2 ways:  

o infinite resources, showing the exact maximum need  

o sized resources, showing margin or raising error in case of overflow. 

At programmatic level: 

 To provide a continuous help in all phases of the development (from phase A to phase 

E), thru nodes models refinement. 

In validation: 

 To execute contingency cases or to replay tests found faulty on actual HW. 

3. SIMULATOR’S VALIDATION 

A particular effort has been put on an incremental test approach, starting with simple use 

cases of easy understanding, mainly verifying 

compliance to standard. Cross validation has been 

done by comparing HW provided results to 

simulator’s.  

Some use cases have been selected for functional 

validation and domain coverage, according to 

their representative features, concerning 

functions, architecture and network complexity.  

A selection of these tests can be used as 

regression tests at each release of the simulator, in 

particular when adapting the simulator to new 

versions of OPNET environment.  

Figure 10 : SW/HW Cross validation 
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4. APPLICATION DOMAIN 

4.1 Expected coverage 

The objective is to dispose of a tool able to cover all space applications.  

 all families of orbits or trajectories, LEO, MEO, GEO, Lagrange point, inter-

planetary, landers, rovers and robotics. 

 All domains: observation, science, exploration, telecommunication, etc… 

 

That’s why next work covers simulation of 4 typical and realistic use cases, respectively 

belonging to interplanetary, LEO observation, exploration and robotics domains. 

4.2 First use case: interplanetary missions 

This use case was proposed for an orbiter, saving science data from multiple instruments 

within a mass memory, and restituting these later on in X-band or Ka-band TM channels.  

The interesting point is that some auxiliary data have to be inserted within the science flow, 

which is done by the SSMM controller (Mass Memory) or PM (Processor Module). This kind 

of features is impacts fluidity of the traffic on the network.  

 

Figure 11 is a limited scenario with science flow (in red) and C/C flow from PM (in blue). 

 
Figure 11 : Network for orbiter with 8 instruments A1 to A8 

 
 
 
 
 
 
 
 

 
 

Figure 12 : Small extract of results obtained for 

scenario of Figure 11 
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Figure 13 : Custom model of the SSMM controller node 

4.3 Second use case: LEO observation 

This use case is Sentinel-3 application, involving 4 instruments, a PDHU as mass memory 

and the central computer of the platform. This is a classical configuration of embedded 

network. 
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Figure 14: Sentinel 3 SpaceWire network 

4.4 Third use case: exploration domain 

The network of Figure 15 is issued 

from soft autonomous landing 

mission, requiring sensor data in a 

continuous way, at a high rate from 

specific complex sensors. The data 

load is far beyond the performance 

of classical data bus, as it requires 

imaging units (optical or LIDAR). 

The fail-op nature of the landing 

phase requires hot redundancy, 

making double complexity for the 

network. 

 

 

Figure 15: Typical exploration use case - Soft landing mission 

4.5 Fourth use case: robotics 

The network on Figure 16 is issued from 

robotics space application, requiring visual 

monitoring sensors and motors encoders as 

actuators.  
 

 

Figure 16 : Space embedded Robotics 
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5. AND NEXT: 

Taking advantage of new modules of last releases of OPNET environment, TAS is now on the 

point to investigate the possibility to connect the numerical simulator to HW sub-network, 

making a numerical / HW hybrid test configuration.  

The main objectives are : 

 to start early with verification of functional behavior of actual HW, even partly, 

 to save planning in case of late delivery of design parts, 

 to replace some part of the network by models, injecting easily traffic anomalies to 

verify contingency cases, or to check the behavior of actual HW in these cases, 

 

Furthermore, TAS has been selected by ESA for a study, aimed at provide a SpaceWire 

simulator, which requirements cover widely the MOST TAS perimeter. SOW requires 

explicitly to study feasibility of hybrid simulation. 

6. CONCLUSION: 

TAS expressed the need for a SpW simulator in early 2006, with questions raised on 

validation of embedded network, considering such design more complex than classical data 

bus or single node to node links. 

This led to the development of the first version of in-house simulator MOST, enriched later 

on with time-code and more complex features as GAR or RMAP. OPNET environment was 

chosen, because dedicated to network simulation, and because of its Man Machine interface. 

 

The simulator has been experienced on several use cases, in the frame of nominal and 

contingency scenarios. Results have shown the usefulness of such a tool, and MOST could be 

the root for industrial simulation product.  

This supposes to enhance models, to add new building blocks, to complete the formal 

validation with reference use cases, to complete documentation and finally ensure the 

maintenance, by in particular following main release of OPNET environment. 

 

A door is opened towards the hybrid network test bench, involving HW sub-networks and 

numerical sub-networks. Such approach looks possible with modules of more recent OPNET 

versions, but requires additional feasibility analysis.  

 

The growing implication of SpaceWire standard in board-to-board communications since first 

version of MOST has never been denied, even if slower than expected. The enhancement of 

performances of embedded avionics (more resources) lead to more ambitious performance 

requirements, including higher data rates, hence more complex communication networks and 

greater volumes of exchanged data.  

 

Validation means shall follow this evolution to keep control and quality of designs of more 

complex embedded systems, communications being a critical issue. Numerical simulators are 

a part of the response, as HW means will be expensive and difficult to set in use early.  
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ABSTRACT 

STAR-Launch is a new software tool that can be used to launch applications and 

modules to interact with STAR-Dundee SpaceWire devices.  It will provide the ability 

to discover devices on a SpaceWire network and display these graphically.  The 

software will then allow applications and modules to be launched to perform 

operations specific to the devices discovered. 

This paper describes the features that are currently provided by the STAR-Launch 

software, and the new features which are to be added.  The updated software will 

provide many of the features described in the draft SpaceWire-PnP Protocol 

Definition.  The services in the draft PnP definition that will be implemented in 

STAR-Launch are described in this paper, along with details of our experience of 

implementing these services. 

1 INTRODUCTION 

STAR-Dundee has been working on an updated API for accessing SpaceWire 

devices.   The new API provides a common interface for accessing all STAR-Dundee 

SpaceWire devices [1], regardless of whether they are routers or interfaces, and 

whether they are connected by USB, PCI, or some other mechanism.  It also provides 

a number of components for implementing common functionality, such as RMAP [2] 

initiators and targets.  Components are also included to create virtual devices and 

links, which allow virtual representations of SpaceWire networks to be built in 

software [3]. 

To allow users to access the new features provided by the updated API, new 

applications such as STAR-Launch have been developed.  The main purpose of 

STAR-Launch is to display the SpaceWire devices connected to a PC, and allow 

applications to be launched to access these devices.  It can display both physical 

devices as well as virtual devices, which can be created using the application. 
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STAR-Launch is being extended to allow the SpaceWire network to which the local 

physical devices are connected to be discovered.  This will make use of the Plug and 

Play (PnP) functionality described in the latest draft of the SpaceWire-PnP Protocol 

Definition [4].  STAR-Dundee devices will be modified to support the SpaceWire-

PnP Protocol, while software modules will be added to the STAR-Dundee 

Application Programming Interface (API) to provide PnP support in both applications 

and virtual devices. 

This paper describes the features of STAR-Launch and the services from the 

SpaceWire-PnP Protocol Definition which will be implemented.  Comments on the 

Protocol Definition and details of the experience of implementing the services are also 

provided. 

2 STAR-LAUNCH FEATURES 

The current release of STAR-Launch automatically detects all STAR-Dundee 

SpaceWire devices connected to the PC on which it is running and displays an icon 

for each device.  The user can run the default software application for a device by 

double-clicking on its graphical representation, or bring up a menu showing all 

available software for the device by right-clicking on it.  An example screenshot is 

shown in Figure 1. 

 

Figure 1: STAR-Launch Screenshot 

The applications provided for each device type, and the default application for a 

device type, are all configurable by the user.  For example, double-clicking on the 
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icon for a SpaceWire Link Analyser would normally run the Link Analyser software 

for that device.  Double-clicking on a SpaceWire-USB Brick icon could bring up a 

window in which the Brick can be configured.  Right-clicking on the icon will bring 

up a list of software which can be run for the SpaceWire-USB Brick, which could 

include the Validation Software, CUBA Software and the default option to configure 

the device.  If a user has written some software which uses the SpaceWire-USB Brick, 

they can add this to the Brick’s menu, and possibly set it as the default option. 

2.1 VIRTUAL DEVICES 

Following the addition of virtual devices and links to the STAR-Dundee API, STAR-

Launch was updated to display all virtual devices and to allow new virtual devices to 

be added and existing virtual devices to be deleted.  Some method to establish virtual 

links between virtual and physical devices, and remove these links when no longer 

required was also required.  STAR-Launch is the ideal application for these purposes, 

so was extended to provide these features.  Rather than just displaying a list of 

devices, STAR-Launch now displays the topology of a PC’s virtual SpaceWire 

network, showing the links between applications, virtual devices and physical devices. 

Virtual devices are treated in a similar manner to physical devices in both the STAR-

Dundee API and STAR-Launch.  STAR-Launch allows applications to be run for 

virtual devices and virtual devices to be configured, just as it does for physical 

devices. STAR-Launch also allows Virtual Link Analysers to be attached to virtual 

links, so that traffic crossing over a virtual link can be monitored and recorded.  This 

is a powerful debugging tool and can be used not only in virtual SpaceWire networks, 

but also to view the traffic passing between a physical device and an application, for 

example. 

2.2 NETWORK TOPOLOGY 

As STAR-Launch provides the ability to interact with both physical and virtual 

networks, and also displays the local virtual network, it was decided to expand this 

functionality to display the physical SpaceWire network or networks connected to a 

PC.  This would allow the user to see the topology of the physical SpaceWire 

network, configure remote devices, send packets or commands to these devices, etc. 

In order to display an arbitrary physical and/or virtual network, a method to discover 

the network is required.  The University of Dundee and STAR-Dundee have 

researched methods to discover networks, and the draft SpaceWire-PnP Protocol 

Definition includes the results of some of this research.  As this protocol definition 

aims to standardise network discovery, device configuration, etc. the PnP Protocol is 

the obvious choice to provide this functionality in STAR-Launch. 

3 SPACEWIRE-PNP SERVICES 

The STAR-Launch application is being updated to include support for the SpaceWire-

PnP Protocol.  The first stage of this process is to add support for the protocol to the 

STAR-Dundee API.  The API already provides RMAP target and initiator 

components, which can be used to implement RMAP support in software.  This 

functionality is being extended to provide PnP initiator and target components in the 

API.  This will allow applications to discover networks and configure devices, and 
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will allow virtual devices and applications to be implemented which can be 

discovered and configured using PnP. 

The STAR-Dundee API will provide all the services outlined for both levels defined 

by the SpaceWire-PnP Protocol Definition, Level 1 and Level 2, and will allow both 

active and passive nodes to be developed.  Active nodes are those nodes which may 

act as the initiators of PnP commands, such as the nodes which request the properties 

of other devices on the network.  Passive nodes are those that only act as a target for 

PnP commands. 

The services for both Level 1 and Level 2 that are being implemented in the API are 

similar, the difference being that Level 2 services must be able to cope with multiple 

active nodes.  An example of when Level 2 services are required is when there are 

multiple nodes trying to discover the network at the same time.  The services to be 

provided are described briefly below. 

Device Identification: This service allows a device to identify itself and to describe 

its characteristics. 

Network Management: This service provides methods to discover and manage a 

network. 

Link Configuration: This service can be used to query and configure the properties 

of the links on a device. 

Router Configuration: This service is provided by routing devices to allow 

properties specific to a router to be queried and configured. 

Time-Code Source: This service is optional and can be used to enable and configure 

a time-code source. 

There are currently two SpaceWire-PnP Capability Services defined by the PnP 

Protocol Definition.  These Capability Services are protocols that a node supports for 

transporting data.  The STAR-Dundee API will provide support for both of these 

services, which are described below.  As with the other PnP services, these are being 

built on top of the RMAP target and initiator components already provided by the 

API. 

RMAP Data Sources: A target which supports this service can produce data in 

response to RMAP read commands, while an initiator can produce data using RMAP 

write commands. 

RMAP Data Sinks: A target which supports this service can consume data in RMAP 

write commands, while an initiator can consume data by initiating RMAP read 

commands. 

4 NETWORK DISCOVERY AND DEVICE CONFIGURATION 

Once the PnP services have been added to the STAR-Dundee API, they will be 

incorporated into example virtual devices provided with the API.  It will then be 

possible to discover these virtual devices if they are connected in a virtual network.  If 

the virtual network is also connected to a physical SpaceWire network, it will be 
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possible to detect the virtual network from any point on the physical SpaceWire 

network.  The virtual network will appear as just another section of the SpaceWire 

network, and the active node discovering the network will treat the virtual devices in 

the same way as the physical devices. 

The updated STAR-Launch application with support for the PnP services will allow 

the SpaceWire network to be discovered and configured.  It will be possible to 

discover and configure existing virtual devices on other PCs connected to a 

SpaceWire network.  This will allow individual PCs to be used to represent different 

subsystems, for example, and each can be configured from a single location. 

In order to enable discovery and configuration of physical SpaceWire devices using 

the SpaceWire-PnP Protocol, these devices must support the PnP Protocol.  STAR-

Dundee’s routing devices, the SpaceWire Router-USB and SpaceWire-USB Brick 

will be updated to include support for PnP.  It is already possible to configure links 

routing tables, etc., of these devices over a SpaceWire network using RMAP, but they 

will be updated to use the register mappings defined for SpaceWire-PnP and to use 

the SpaceWire-PnP Protocol ID [5]. 

The SpaceWire-PnP software components added to the API can be used to provide a 

PnP service for devices.  To support SpaceWire-PnP in SpaceWire interface devices, 

such as the STAR-Dundee SpaceWire PCI device, no modification is required to the 

hardware, as shown in Figure 2.  This diagram illustrates how configuration port 

traffic received by the PCI device (packets with a first byte of 0) could be routed to a 

protocol dispatcher by a virtual router.  PnP traffic could then be routed to the PnP 

service by the protocol dispatcher, while RMAP traffic could be routed to an RMAP 

implementation of a configuration port.  Meanwhile, packets with a logical address of 

70, for example, could be routed from the PCI device to a mass memory unit 

application. 
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Figure 2: SpaceWire PCI Interface Device Supporting PnP 
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This diagram could be simplified by removing the protocol dispatcher and RMAP 

configuration port.  The PnP service would then deal with all packets sent to the 

configuration port, ignoring any with an incorrect protocol ID. 

Alternatively, if there is a virtual SpaceWire network connected to an interface 

device, it may be required that the device does not respond to PnP requests.  It then 

becomes a pass-through device which is not visible to the active nodes which detect 

the network.  The instance of STAR-Launch running on the local PC will have 

knowledge of the virtual network, and will display it in its network topology display, 

as shown in Figure 3, which shows three applications connected to each of the links of 

a PCI device.  STAR-Launch instances running on other PCs will have no knowledge 

of the PCI device’s existence, and will just see three nodes connected to each of the 

links, if these applications respond to PnP requests. 
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Figure 3: SpaceWire PCI Interface Device Acting As a Pass-Through Device 

5 DEVELOPMENT EXPERIENCE 

The implementation of the SpaceWire-PnP features in the API, the improvements to 

STAR-Launch to support these features, and the addition of PnP support to STAR-

Dundee devices, are ongoing.  The experiences of the developers working on these 

features can be of use to others working on SpaceWire-PnP developments. 

The developers found that it is quite simple to implement the protocol using existing 

RMAP components, as SpaceWire-PnP is built on top of RMAP.  STAR-Dundee 

hardware was already designed to allow properties to be read and configured using 

RMAP reads and writes, so software and hardware RMAP implementations were 

already present. 

The SpaceWire-PnP Protocol Definition is very long (211 pages), and this gave the 

impression that the PnP Protocol was very complicated.  However, after some initial 

reading it became clear that there are only around 20 pages that everyone working 

with SpaceWire-PnP must read: sections 3 and 4.  The sections which follow this, 

SpaceWire Networks and Protocols

372



sections 5, 6, 7 and 8, provide all the technical information to implement a service, 

and are useful reference points for the developers. 

The protocol definition is not yet at a stage where it can be considered complete.  In 

addition to the prototyping and technical verification required before SpaceWire-PnP 

can be considered a suitable solution, there are still a number of typographical 

improvements that need to be made to the document.  It does however appear to 

provide a capable solution to provide Plug and Play support over SpaceWire. 

6 SUMMARY 

This paper has described the features of STAR-Launch, the features of SpaceWire-

PnP, and how these two are being combined.  The experience of the developers 

working on the implementation has shown that the SpaceWire-PnP Protocol 

Definition, while not yet perfect, seems to provide a comprehensive set of services to 

allow networks to be discovered and devices to be configured. 
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ABSTRACT 

SpaceWire protocols use packets at the Network level and flits for flow control at the 

Exchange level. For further evolution of SpaceWire technology framing could be 

introduced. The article considers different forms, levels and application of frames, 

considers adaptability of different variants of frames implementation for SpaceWire. 

As a trend frames are correlated with virtual channels. Reasons for extending frames 

from the traditional Data Link layer to the Network layer are considered in correlation 

with basic SpaceWire features that have shown their efficiency.  

1 INTRODUCTION 

Classical definition attributes frames to the Data Link layer, [i], as the PDU (Protocol 

Data Unit) of this layer. According to the OSI Reference Models layers messages are 

segmented at the Transport layer in sequences of packets, which are transmitted and 

routed by the Network layer; packets are reformed into frames at the Data Link layer. 

Relation between a packet and a frame could be different – the packet could be 

enveloped into a frame, or it can be segmented further and transmitted over the data 

link as a sequence of frames. Modern interconnections use further levels of 

segmentation and units also: flit (flow control units) and phit (physical unit – unit of 

information that is transmitted by the data link in clock period), [ii].  

Typical frame has a header, payload field and check sum (usually CRC). Frame 

format and length of a frame can depend on the frame type; e.g. data frames and 

control frames. for a particular type it is usually fixed or limited by a fixed value. The 

frame header holds information on its type, priority, length and some information that 

attributes the frame to a particular packet. Some standards include additional 

information to be used by the Data Link layer or by higher protocol layers; e.g. in 

FibreChannel the frame header tells if the frame is the first or the last in the frames 

sequence for the message; for connection-oriented services it also marks if the 

connection should be closed after this frame. The number of frame in the frame 

sequence could be included in the header to support in order delivery.  

The SpaceWire has a typical flit-based flow control mechanism at the data link layer  

(though the word flit itself isn’t used in the standard).  Packets are specified as basic 
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PDU. Messages, frames are not used in the SpaceWire standard. A message as the 

Transport layer SDU (service data unit) is either to be enveloped in a single packet, or 

to be segmented into packets somewhere out of the specified Transport layer. Such 

vision is supported by unlimited length of SpaceWire packets; no packet length limit 

is given in the specification, all the layers’ protocols are specified to be operational at 

any length of a packet (though a packet should have final length and be finished by 

EOP/EEP). The standardized SpaceWire wormhole routing helps to disjoint a routing 

switch buffering and a packet length. However, it fixes dependency of a routing 

switch input/output ports occupation, as well as internal switch data paths, on the 

routed packet length. Once a packet started to run by the link, by the switched in the 

router input-output ports pair any other packet transfer that needs the same input or 

output port would have to wait finish of the current packet transfer to make its attempt 

to access the port. Longer the current packet is, for longer time it will occupy the link. 

It makes hard to ensure faire distribution of links and routers throughput between 

different packet flows, to support prioritized packet transfer, give reliable estimation 

of packet delivery time, build QoS transmissions. Clever exceptions in SpaceWire are 

control codes, e.g. time-codes, that preemptly cut in a data bytes flow. 

Some standards, workaround the problem by strictly limiting a packet length (e.g. 276 

bytes in RapidIO); thus any packet wouldn’t occupy any path for a long period. 

Another way is to apply to basics of the OSI Data Link layer and introduce extra level 

of segmentation – segmentation of packets into frames. Thus unlimited in its length 

SpaceWire packet would be cut into quite limited in length portions, which would be 

formatted into frames, and sent over the link as a sequence of frames. If we could 

attribute a frame to a particular packet in some way, then we can multiplex frames 

from different packets, make several packets to run simultaneously over one data link, 

intermitting by frames. Such a way is proposed, for instance, in the initial SpaceFibre 

specification as an evolution of SpaceWire, [iii]. Introducing frames, correlating it 

with SpaceWire features we get new facilities to solve several types of problems. 

2 FRAMES 

2.1 FRAMES AND RELIABLE DELIVERY IN A DATA LINK 

Unlimited length of SpaceWire packets gives no way for reliable delivery at the Data 

Link layer; it would. require buffering of the whole packet to be able to retransmit it 

in case of delivery with errors or loss. A limited length frame could be buffered, could 

be checked on delivery and retransmitted in case of loss or an error on receipt. 

Typically, buffering is required in the output link, at the transmitter side and could be 

used or not at the receiver side (a receiver could check the incoming frame on the fly). 

2.2 FRAMES, FLOW CONTROL AND CREDITING 

Flow control is one of the key features of the Data Link layer that is implemented in 

most network standards. Different modes of flow control could be used: crediting by 

receiver or by transmitter, absolute or relative credits, without crediting – deleting a 

received packet if there is no space for it at the receiver side and indicating later 

retransmission request (e.g. in RapidIO). In a data link the SpaceWire uses flow 

control with crediting by the receiver, flit (8 bytes) based. The flit isn’t correlated with 

packets length and packets’ boundaries. Thus a packet end (e.g. 4 bytes) could jam in 
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the link for a while due waiting for a full flit credit.  Should we move to a frame-based 

crediting (proposed by the SpaceFibre draft) or leave the flit-based crediting? It is 

correlated with features in protocols and implementations, e.g. with buffering.  

2.3 FRAMES AND BUFFERING 

The SpaceWire protocol stack architecture is based on the assumption that a packet 

need not be buffered in a router it passes. The wormhole routing, a type of cut-through 

routing, is standardized. Thus a router buffer space is not related with a packet length. 

Rather it is correlated with data link layer PDU size and flow control units, 8 byte 

flits. Definitely we should like to save this feature in further evolution. The classic 

SpaceWire data link PDU is a packet; the flit is 8 byte chunk of information flow. 

With introduction of frames the frame will be the data link PDU. Should we move all 

the buffering to this type of PDU? It is a question for investigation. As one can see 

from the above paragraphs we need PDU-frame buffering in the transmitter part of the 

data link if we want to ensure reliable delivery at the data link layer. However, the 

flow control could be either moved from flits to frames (the SpaceFibre draft way), or 

left at the flit layer of the classic SpaceWire. In the latter case input buffer size could 

be smaller. We should also take into account that buffer size could depend upon 

implementation of another features of data link protocols, e.g. o possible sliding 

window flow control and in-order delivery of frames of the packet. Estimating known 

in networks theory and practice methods one should keep in mind the basic principal 

of the SpaceWire technology – compact, low cost implementation. 

2.4 FRAMES AND PRIORITIZED PACKETS DELIVERY 

By multiplexing by frames multiple packet simultaneous transfer over a single data 

link we open possibilities for fine grade prioritization in packets delivery also. In 

SpaceWire a prioritization could be implemented only at the packet level. With 

unlimited packet length it looks rather poor: any low priority packet, which happened 

to get a link while there were no high priority ones, can hold the link for a long time. 

Add here also no obligation of a sender to form and send a packet in high rate and 

without gaps. With frames we can improve the situation by passing priority to the 

packet’s frames and using it for link access arbitration in frames multiplexing. Frames 

from high priority packets would wait for a limited time for the link access (frame size 

is limited, unlike the packet size). It will make prioritized packet transfer reasonable. 

It also opens a way for predictable delivery time for high priority packets, though such 

time prediction calculations in many cases would be not an easy task. 

2.5 FRAMES AND QOS 

Further improvements in services provided by SpaceWire interconnections could be 

achieved by using frames for QoS.  A packet source could attribute a QoS class to the 

packet; the class is passed to its frames. Any passed by the packet’s frames flow data 

link and routers could analyze this class in all the parsing frames and use it in 

selection of priority and routs for frames forwarding. Frames features, its limited 

length and explicit indication of QoS it requires gives embedded in the 

interconnection algorithms to support QoS in a guaranteed way, not dependent of faire 

operation of packet sources and sinks throughout the interconnection. 
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2.6 FRAMES AND VIRTUAL CHANNELS 

A general issue in framing is attributing frames to packets or messages. For attributing 

a frame some information in its header is used. It can be its parent packet or message 

identification, or attribute of a logical path.  Frames are a typical mean in virtual 

channels implementation. Virtual channels share a physical link by multiplexing their 

flows in it. With frames it would be a fame-level multiplexing. It ensures independent 

operation of source-sink pairs that correspond to separate virtual channels that is 

helpful in solving many types of problems in robust network operation.  

2.7 FRAMES, VIRTUAL CHANNELS AND CLINCH PREVENTION 

Virtual channels can help in clinch prevention for duplex data link layer. A dense 

PDU output flow in one link direction could occupy the entire output buffer and leave 

no space for control PDUs that should be sent for incoming PDU flow protocol state 

transition at the other side of the data link. In case of similar situation at the opposite 

side of the link one would have a classic clinch. By assigning a separate virtual 

channel for control PDU transfer one guarantees that its link access would be granted 

regardless data PDU flow intensity. For instance, the Infiniband assigns a separate 

virtual line #15 for control PDU transfer, [iv]. In SpaceWire the Control codes help to 

bypass such danger by immersing the control to the lower layer PDU – control codes 

(Symbol level PDU), that transparently cut through a data characters flow. However, 

higher level protocols could require control packets exchange to support protocol’s 

FSM operation; frame based virtual channels could be used to guarantee it. 

2.8 FRAMING AND THE NETWORK LAYER 

Frames multiplexing could be useful not only in a data link, but at the level of a 

routing switch also. SpaceWire supports multi-rate links operation and a router can 

have links that operate with different rates. If a slow link receives a packet that should 

be passed to a fast output link, the low rate input link would drive the rate of the high 

throughput output link; filled by NULLs gaps will be at the link, while no other ready 

packet could use the link until the current packet will run out. Input buffering packets 

could help, but it requires setting constraints on the packet length (to have reasonable 

buffers) and increase packet transfer latency. Frames could be buffered at router input 

ports; streams of frames from different packets could be multiplexed in the output port 

and run multiplexed at the output link, without gaps. However, it means that several 

packets (their parts – frames) simultaneously run from a link to the next router (or 

node) input port. Demultiplexing of these frames from different packets in a stream 

requires attributing frames to packets; attributed frames of different packets should be 

routed to appropriate buffers or the routing switch paths to appropriate output ports.  

Attributing a frame to the packet could be based on some packet identification in the 

frame header. By joining frames with virtual channels the identification could be done 

by the virtual channel number thus assuming that only one (framed) packet is 

transmitted at a moment in the virtual channel. Virtual channels number is typically 

small (16 for Infiniband, 256 in the SpaceFibre proposal). It is good for compact 

virtual channel identification in frames and its processing in a router, but limits the 

number of packets that could run simultaneously multiplexed by frames. With a 

virtual channel identification, VCid, in the frame header a frame could be easily 

attributed to the virtual channel and thus – to the packet. For the SpaceWire Network 

SpaceWire Networks and Protocols

378



level, the first frame of the packet should be unpacked and the packet header used for 

routing; after determining the output port and switching path to it the frame is 

forwarded to the output port for transmission; next packet frames could be send by 

this path directly from the input port.  

Above it is assumed that there is a set at the input data link and a set at the output data 

link. Appropriate virtual channel number is coded in the header of every incoming the 

router frame. The output port for the frame is determined by the packet routing, to 

which the frame belongs to. However a virtual channel for the frame at the output port 

should be determined also; the in-router switch path should connect not just ports, but 

the input port virtual channel with the output port virtual channel. Building this pair 

becomes a part of the routing switch procedure on receipt of a packet header (inside 

its first frame). Thus frames and virtual channels could be introduced in SpaceWire 

along with its efficient and low latency wormhole routing. However we should take 

into account necessity of a frame transformation in its path from the input to the 

output port: its input port VCid should be changed for another VCid of the virtual 

channel output port. Changing a byte in the frame header can lead to CRC re-

calculation. Some standards take the part of the header, which is changed at a hop, out 

of the CRC coverage (e.g. Infiniband, [iv] and RapidIO, [v]). Additional 

transformations should be done in the first frame of a packet in case of a path or a 

regional address: header byte deletion changes the length and CRC of the frame.  

The claimed above relation: frames of one packet only running in the virtual channel, 

could be also argued. With this assumption frames could be attributed to packets 

simply by the virtual channel number. Otherwise, if a virtual channel could have a 

frames mixture of different packets simultaneously, additional coding for attributing a 

frame to the packet is required in the frame header. This type coding in a frame header 

and its processing in every passed by the frame router is used in some standards (e.g. 

Infiniband, FibreChannel, [vi]). However, implementation cost for such complication 

should be estimated carefully in reasoning on using it in SpaceWire evolution.  

3 CONCLUSION  

Frames and virtual channels are efficient way for SpaceWire technology evolution, 

help to solve its problems and reduce bottlenecks. However  to use the framing and 

virtual channels potential one could not stop at the Data Link layer and have to cover 

the Network layer issues also. New features have their cost of implementation and 

developments should be balanced with the key properties of the SpaceWire – 

compactness, economy and cost-efficient implementation in chip area and power 

consumption. These problems are to be investigated in further developments of the 

SpaceWire standard family, in SpaceFibre and SpaceWire 2 developments. 
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ABSTRACT 

SpaceWire [1] has been used on many spacecraft as a means of high-rate data transfer 

between onboard components. It has the capability of moving data from an onboard 

node to another onboard node and the capability of specifying the route to be 

traversed in the network. However, it does not have the capability to provide different 

classes of quality of service (QoS) for different types of data flows. To operate 

spacecraft onboard components, several types of data need to be transferred between 

onboard nodes and each of these data types has different QoS requirements. This 

paper describes the QoS classes that need to be provided by a higher-layer protocol to 

support spacecraft operations, and proposes simple solutions to implement them. 

1 INTRODUCTION 

SpaceWire [1] has been used on many spacecraft as a means of high-rate data transfer 

between onboard components. It has the capability of moving data from an onboard 

node to another onboard node and the capability of specifying the route to be 

traversed in the network. However, it does not have the capability to provide different 

classes of quality of service (QoS) for different types of data flows. To operate 

spacecraft onboard components, several types of data need to be transferred between 

onboard nodes and each of these data types has different QoS requirements. If 

different types of data can be transferred in a single network, we can minimize the 

implementation efforts and maximize the efficiency of the network. Therefore, it is 

desirable for most spacecraft applications of SpaceWire if there is a higher-layer 

protocol that runs over SpaceWire and provides necessary classes of QoS for different 

types of data. 

There are three important measures of QoS for spacecraft applications: latency, 

reliability, and volume. For example, data used to monitor and control onboard 

components in real-time need to be transmitted over the network within a limited 

latency, while data related to science or mission products are not so sensitive to 

latency. Data used to monitor and control intelligent components need to be 

transferred reliably, and their losses should be detected immediately. Data generated 

periodically do not have to be protected against losses so severely. Data used to 

monitor and control components have small volumes, while data related to science or 

mission products have large volumes. 
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This paper describes the QoS classes that need to be provided by a higher-layer 

protocol to support spacecraft operations in section 2, and proposes simple solutions 

that implement the QoS classes in section 3. 

2 QUALITY OF SERVICE (QOS) REQUIREMENTS 

2.1 DATA TYPES USED FOR SPACECRAFT OPERATIONS 

To operate spacecraft onboard components, several types of data need to be 

transferred between onboard nodes. There are three major types of data that are used 

on most spacecraft: data used for monitoring and controlling onboard components, 

data used for mission production, and data used for maintaining onboard components. 

To monitor and control onboard components, commands are sent from a computer (it 

may be the central computer of the spacecraft, the attitude and orbit control computer 

or a payload/mission computer) to components, and telemetry is sent back form the 

components to the computer. There may be several different types of commands and 

telemetry depending on the types of the components monitored and controlled. If the 

component monitored and controlled is an intelligent one having a processor, 

commands are used to start/stop programs and change settings of the programs. The 

component returns high-level messages or reports about the status of the execution of 

the programs. If the component monitored and controlled is a non-intelligent device 

without a processor, commands are used to control the device directly in real-time. 

The device returns the status of its various parts (called housekeeping data) 

periodically. Intelligent components may also generate housekeeping data 

periodically. The computer also distributes clock data to components to inform them 

of the value of the master clock of the spacecraft periodically.  

Science instruments generate science data that are the products of the mission. For 

example, cameras generate images. To maintain onboard components, especially 

those with processors, it is sometimes necessary to upload and download memory data 

to and from the components. Memory data include computer programs and large 

tables such as star catalogues. 

Table 2-1 summarises the types of data discussed in this subsection. 

Table 2-1 Types of Data used for Spacecraft Operations 

Data Types 

Data used for monitoring and 

controlling components 

Commands For intelligent control 

For real-time control 

Clock 

Housekeeping data 

Reports 

Data used for mission production Science data 

Data used for maintaining components Memory data 
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2.2 QOS REQUIREMENTS FOR DATA TYPES 

Each of the data types described in 2.1 has latency, reliability and volume 

requirements. Clock data and data used for monitoring and controlling non-intelligent 

devices (commands for real-time control and housekeeping data) have a high latency 

requirement (that is, they have to be delivered to the destinations within a short time), 

a low reliability requirement (that is, small losses of data can be tolerated), and a low 

volume requirement. Data used for monitoring and controlling intelligent components 

(commands for intelligent control and reports) have a high latency requirement, a high 

reliability requirement (that is, losses of data cannot be tolerated), and a low volume 

requirement. Science and memory data have a low latency requirement, a high 

reliability requirement, and a high volume requirement. 

Table 2-2 summarises the QoS requirements for each data type. 

Table 2-2 QoS Requirements for Each Data Type 

Data Types Latency Reqs. Reliability 

Reqs. 

Volume 

Reqs. 

Commands intelligent control High (Asynchronous) High Low 

real-time control High (Periodic) Low Low 

Clock High (Periodic) Low Low 

Housekeeping data High (Periodic) Low Low 

Reports High (Asynchronous) High Low 

Science data Low (Asynchronous) High High 

Memory data Low (Asynchronous) High High 

3 PROPOSED SOLUTIONS 

3.1 LATENCY CONTROL 

Some of the data types require that data have to be delivered to the destination within 

a limited amount of time. Assigning dedicated time slots to these data types is a 

simple way of guaranteeing latency requirements for these data types. SpaceWire [1] 

has a mechanism of distributing 64 time codes and these time codes can be used to 

define time slots. A dedicated time slot (or a set of dedicated time slots) should be 

assigned to each data type (or a set of data types having similar latency requirements). 

Out of 64 time slots, a small number of time slots will be assigned to the data types 

with high latency requirements and the other time slots to the other data types. 

To control the data traffic in each slot, there must be a master node for each time slot. 

If the network can be divided into multiple sub-networks each of which does not share 

network resources with the other sub-networks, there can be a master in each of the 

sub-networks. The master can either (1) send data to or receive data from the other 

nodes in the slot or (2) determine which node should send data to which node in the 

slot. For the master to be able to determine which node should send data to which 
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node, the master should poll data transfer requests form the other nodes and signal its 

decision in the same slot or in another slot assigned to such usage. 

For monitor and control purposes, the node that monitors and controls the other nodes 

will be the master of the slot and it sends commands to and collects telemetry from 

the other nodes. For transferring science and memory data, the master can either (1) 

send or receive data or (2) determine the source-destination pair.  

Since the data types with high latency requirements have low volume requirements, 

and vice versa, the same mechanism can be used to control volume requirements. 

3.2 RELIABILITY CONTROL 

For data types with low reliability requirements, data should be transmitted only once 

without retransmission because the receiver can wait for the next data without needing 

to receive the missing data. For data types with high reliability requirements, 

retransmission of missing data is necessary either through the same path or through a 

redundant path. For both types of data, it may be desirable to have a mechanism to let 

the sender know whether or not the receiver has received the data sent by the sender.  

Reception acknowledgement and retransmission control should be implemented by a 

protocol at a layer higher than the layer that controls the slots. If the Remote Memory 

Access Protocol (RAMP) [2] is used, only the retransmission control should be 

implemented on top of RMAP because RMAP has the capability for reception 

acknowledgement. In this case, RMAP should be used on top of the slot control layer. 

4 CONCLUSION 

This paper has shown the QoS classes that need to be provided by a higher-layer 

protocol to support spacecraft operations, and proposed simple solutions to implement 

them. 
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ABSTRACT 

The SpaceWire standard includes Time Codes that were designed for implementation 

of time distribution services. Using time codes the Time Access Service was 

developed. It provides a consistent application interface to a local time source that is 

maintained to be synchronised to the onboard time source master.  

Distributed Interrupt mechanism has been proposed for next SpaceWire standard 

release. Interrupt codes and Interrupt_Acknowledge codes are low-latency signalling 

codes and their distribution does not depend on data flow that makes it useful for real-

time distributed systems interconnections. The distributed interrupts service provides 

real-time signalling for applications in distributed architectures with SpaceWire 

interconnections. The received from SpaceWire network Interrupt codes would be 

transmitted to user applications as real time signals with the standard POSIX Real 

time signals mechanism. Described services were developed for Linux OS with 

patches for running in soft real time. 

1 SERVICES ARCHITECTURE 

Linux offers embedded designers an inherently modular operating system that can be 

easily scaled down to compact configurations suitable for embedded designs. Plus, 

Linux is the fastest growing server operating system and is rapidly moving into 

embedded applications.  

For chips manufactured by ELVEES with built-in SpaceWire channels software has 

been developed to work with in the OS Linux environment: 

 Drivers for SpaceWire channel controllers, which allow to use of SpaceWire 

channels (links) as regular network devices. Each channel is represented by its 

network interface with an IP address; so all TCP/IP applications that use BSD 

POSIX sockets API would work over SpaceWire interconnections without any 

change. 
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 The Time Access Service (TAS), that provides applications with a consistent 

interface to a local time source that is source that is maintained to be 

synchronised to the onboard time source master.. The time values provided by 

this service might typically be used by applications to schedule some 

operations, such as the acquisition of an image or to time stamp locally 

generated telemetry data. 

 Distributed Interrupts Service (DIS) is a service for real-time signalling with 

SpaceWire distributed interrupts. Its software interface for applications is the 

standard POSIX real-time signals interface. 

 

2 NETWORK SERVICES 

Each SpaceWire channel is represented by the Network Services that work over Low-

level SpaceWire services (driver included) as a regular Linux network device with its 

own IP address; it supports data transmission over TCP/IP. User applications are 

provided with the standard POSIX socket interface, so a lot of network applications 

can be used over a SpaceWire interconnection without any change: http, ftp, telnet 

clients and servers, and a wide range of standard utilities for network configuration 

and diagnostics, as ifconfig, route, ping, nuttcp, etc. 

3 DISTRIBUTED INTERRUPTS SERVICE 

Interrupt-Code represents a system signal request. It is issued by a node link that will 

be considered as the source node for this interrupt (Interrupt Source). The Interrupt-

Code is broadcasted to find an Interrupt Handler node. It is distributed over the 

network to all other nodes. An Interrupt-Code should be accepted for handling in 

some node of the SpaceWire network, which will be called the Interrupt Handler. The 

host of the node is supposed to implement some interrupt processing routine. One of 

32 interrupt request signals (interrupt source identifiers) could be identified by the 

Interrupt-Code.  

Figure 1: OS Linux architecture with 
SpaceWire services 
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Interrupt_Acknowledge-Code represents a confirmation that the Interrupt-Code has 

reached some Interrupt Handler and has been accepted by it for processing. The 

Interrupt Handler node should send an Interrupt_Acknowledge-Code with the same 

five-bit interrupt source identifier as in the accepted Interrupt Code.  

A signal is a limited form of inter-process communication used in POSIX-compliant 

operating systems (Linux included). Essentially it is an asynchronous notification sent 

to a process in order to notify it of an event that has occurred. When a signal is sent to 

a process, the operating system interrupts the normal flow of program execution. 

Execution can be interrupted during any non-atomic instruction. If the process has 

been previously registered as the signal handler its routine is executed.  

The PASC Real-time System Services Working Group (SSWG-RT) has developed a 

series of standards that amend IEEE Std 1003.1-1990 and the profile standard (IEEE 

Std 1003.13-1998). The Real-time amendments to IEEE Std 1003.1-1990 is IEEE Std 

1003.1b-1993 Real-time Extension. According to this standard, Linux support 32 real-

time signals, ranging from SIGRTMIN to SIGRTMAX that can be used for 

application-defined purposes. 

The Distributed Interrupts Service (DIS) uses a real-time signal to inform user 

applications about the interrupt or exception that has been set somewhere in the 

distributed system. Applications have to register at the DIS service and define the 

interrupt handler to receive the particular real-time signal. 

 

4 TIME ACCESS SERVICE 

The CCSDS (The Consultative Committee for Space Data System) develops standards 

for space systems. It proposed a draft standard SOIS version CCSDS 872.0-R-0.3, 

which defines the requirements for the network subsystem; it is specified in the form 

of services over the network. 

One of the proposed services is time access service. This service allows many hosts to 

work with the same time. It supports synchronous and time scheduled execution of 

programs, which is important for onboard real-time systems.  

The SOIS Time Access Service provides applications with a consistent application 

interface to the local time source that is maintained to be synchronised to the onboard 

time source master.. The time values provided by this service might typically be used 

Figure 2: Distributed interrupts service architecture 
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by the application to schedule some operations, such as the acquisition of an image or 

to time stamp locally generated telemetry data.  

The SpaceWire standard has Time Codes – a tool that could be used for time 

distribution service implementation, though it does not suggest a ready-maid 

mechanism for local times synchronization in distributed systems.  

In our research we have reviewed existing algorithms of time distribution, designed 

and realized the unified time service according to the developed algorithm. It 

corresponds to the standard CCSDS SIOS «Time access service», and uses SpaceWire 

times codes for time marks distribution.  

A typical architectural scenario is shown at the Figure 3. The onboard time system 

architecture consists of local and master onboard time sources implemented in 

hardware. 
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ABSTRACT 

SpaceWire-D is a new protocol developed for SpaceWire to provide deterministic 

delivery and offer guarantees in latency and bandwidth. This paper presents the main 

design drivers of SpaceWire-D, the key concepts involved, and the results of software 

prototyping using flight qualified SpaceWire components.  

1 INTRODUCTION 

SpaceWire [1] provides a versatile network architecture for onboard data-handling 

using switches and bi-directional serial links. It delivers the high throughput required 

for payload data with low implementation cost. However, it does not provide 

guarantees in the packet latency due to network congestion. Besides, the use of 

wormhole switching increases the worst case latency of packets that use shared links 

on the way to their destination. 

SpaceWire-D [2,3] is a protocol that provides guarantees in latency and throughput by 

ensuring deterministic packet delivery. A Time Division Multiplexing (TDM) 

technique allows delivering data within predetermined time constraints. TDM is 

implemented using SpaceWire time-code characters sent periodically to determine the 

time-slots. A suitable network schedule determines when each node can send data, 

imposing that there is never congestion in the network. Without congestion, 

throughput and latency are deterministic and can be set by the user via scheduling.  

This is in contrast with other techniques that attempt to only mitigate network 

congestion and rely on network simulations to obtain throughput and latency figures. 

Therefore, TDM allows assigning, independently, the worse case packet latency for 

command and control operations and the minimal throughput for payload data. It 

overcomes the traditional conflict between these two network metrics. This generic 

approach was also proposed for SpaceWire-RT [4], a protocol that targets reliability, 

in addition to timeliness issues. 

The other main characteristic of SpaceWire-D is the utilization of RMAP protocol [5] 

to encapsulate the user data into SpaceWire packets. RMAP protocol provides a 

convenient way to read and write to remote memory address space using SpaceWire 

and is being proposed for the operation of the Plug and Play protocol. Therefore, 

SpaceWire-D provides deterministic delivery to these basic operations with high 

efficiency and low cost, without limiting further possibilities with optional functions 

and upper layer protocols. 
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2 DESIGN DRIVERS 

SpaceWire-D was designed to be simple and effective. High performance requiring 

high complexity was avoided. Functionalities that are not required to achieve 

deterministic behaviour do not belong to the protocol core but instead are optionally 

implemented by upper level protocols. Existing SpaceWire technologies and protocols 

are used to take advantage of available devices and services. Finally, some flexibility 

is sacrificed in benefit of a low cost solution to most user cases. 

3 SCHEDULING 

SpaceWire defines at link level a high-priority low-latency character that provides a 

tick signal and an associated code that is broadcasted to all the network. Called time-

code, it is a natural choice for distributing the synchronization signal that determines 

the current timeslot of the network.  

Transaction 

Most avionic systems use command and response transactions requiring a 

bidirectional communication.  The requirements on latency and bandwidth apply to 

the whole transaction, not to the individual command/response packets. Therefore, the 

scheduling refers to transactions, and the reservation of bidirectional links, not 

unidirectional paths to the destination. This usually improves network usage as 

timeslots of fixed length are not wasted in small command packets. 

Schedule table 

During a specific timeslot, one or multiple nodes are allowed to initiate a single 

transaction, following a network schedule table. Multiple concurrent initiator nodes 

are allowed providing that they do not use any of the same SpaceWire links in the 

network. To enforce that, each initiator node may implement a local schedule vector 

that determines for each slot which destinations, represented by logical addresses, are 

valid. Note that multiple destination logical addresses can represent the same 

destination node but may indicate the use of different paths or different subunits 

within the destination node. 

This destination list could be empty or could indicate that any destination is valid. If 

multiple destinations are provided, the node initiates a transaction with the first 

destination in the list with a pending transaction request. This simple priority 

mechanism allows to guarantee certain bandwidth and latency for the first destination 

in the list without loosing the bandwidth allocated when there is no pending 

transaction request for this destination. Besides, it provides more flexibility that the 

scheduling implemented for SpaceWire-RT protocol, which only allowed one 

destination node per timeslot.  

An example schedule table is illustrated in Figure 1. It schematically represents a 

typical application for on board data handling. A mass memory unit is reading data 

from each instrument and writing data to a telemetry system, while a control 

processor is controlling instruments and stores housekeeping information in the Mass 

Memory. Therefore, the control processor unit is a initiator node, the instruments 

(addresses 40,41,42) and the telemetry system (address 60) are target nodes, and the 

mass memory (address 50) is an initiator and a target. 
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Time-slot 0 1 2 3 ... 63 

Control Processor Targets 41, 42, 50 42, 40, 50 40, 41, 50 41, 42, 50  40, 41, 50 
Mass Memory Targets 40, 60 41, 60 42, 60 40, 60  42, 60 
       

Figure 1: Example of a Schedule Table.  

In this example table, the control processor only writes data to the Mass Memory 

when it does not have to issue control commands to the instruments, which have 

tighter latency requirements. A new command can be sent to any of the instruments in 

less than two timeslots (i.e. 100µs latency if a slot last 50µs). 

4 TRANSACTION LAYER 

User data is encapsulated in the data field of RMAP packets. RMAP protocol 

provides read and write operations on remote memory addresses with optional 

acknowledgement for write operations. RMAP targets are usually implemented in 

hardware and should execute RMAP operations within a few microseconds, excluding 

the reception or sending time. Even in case of error all SpaceWire data characters 

should be consumed at the destination so a SpaceWire link never gets blocked. This is 

the case of most of available RMAP implementations.  

The maximum data length of a RMAP packet is limited by the protocol (i.e. 512 

bytes). Bigger user data units can be accommodated by using consecutive slots or by 

implementing a segmentation layer.   

5 FDIR FUNCTIONS 

Fault detection is provided using the optional acknowledge feature of RMAP and the 

SpaceWire link layer error detection. This covers link errors, router and node interface 

failures, and all system errors covered by the RMAP protocol. Synchronization errors 

due to system clock failure or missing/invalid time-codes are detected using a local 

clock synchronized with the period of time-code arrival (timeslot period). 

Upon error detection, recovery functions such as retrial mechanisms or redundancy 

switching are left to upper layer protocols or to the application. This reduces the 

complexity of the protocol and allows the user to use the best method adequate to a 

particular scenario. 

6 PLUG AND PLAY (PNP) SUPPORT 

SpaceWire-D supports plug and play efficiently, by using the same mechanism, the 

RMAP protocol, for its operation.  New nodes attached to the network are detected by 

the network manager, as a result of a change in the status of the link, which the new 

node is attached. The network manager is responsible for the SpaceWire-D related 

configuration of the new node. 

Alternatively, new initiator nodes can also notify the network manager of its presence, 

but only when the timeslot number is zero. New initiators only operates once its local 

clock is synchronized with the period of the time-codes received and the network 

manager logical address is present in the attached router configuration space. Besides, 

initiators can only perform read and write RMAP operations with a maximum of four 
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bytes. The maximum number of devices that can be connected simultaneously in a 

already configured network depends on the maximum data length. 

If no timeslots are received and the initiator node is configured as a potential network 

manager then network discovery algorithms can asynchronously discover and 

configure the network.  

7 PROTOCOL STACK  

The protocol stack for SpaceWire when using SpaceWire-D is illustrated in Figure 2. 

Extra functionalities not directly provided by SpaceWire-D are the Packet Transfer 

Protocol (PTP), the segmentation function and the Retry/Redundancy layer. 

 

SpaceWire

PTP

RMAP

SpW PnP

User Application

Scheduling

Retry/Redundancy

Segmentation

 

Figure 2: SpaceWire protocol stack using SpaceWire-D 

The segmentation function is only required when the user data units are bigger than 

the maximum SpaceWire-D data length, and a schedule with consecutive slots is not 

considered. It operates by creating multiple RMAP transactions that use the maximum 

data length except the last one. The RMAP address is incremented by the data length 

value for each transaction. Optionally, one byte of the transaction field of RMAP can 

be used to indicate the user data unit sequence. 

The optional retry/and redundant layer provides recovery mechanisms when a 

network error occurs, i.e. an RMAP acknowledge is missing. This can be check at the 

beginning of the next timeslot or after a arbitrary timeout has elapsed. This later case 

is more complex and requires the use of one byte of the transaction field of RMAP to 

keep track of the transaction number. 

The Protocol Transfer Protocol provides the functionality required to send user 

messages to another node  using packet buffers. Both a push and a pull type of packet 

transfer capability could be provided using RMAP writes or reads respectively. The 

transaction field of RMAP is used to identify which packets belong to a user message 

or user data unit. This layer can provide notifications/interruptions that a new message 

is available or has been sent, and the size of the message. It can also notify that one or 

more messages have been processed at the destination. This provides a kind of 
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application acknowledge and an end to end flow control mechanism that can be useful 

for pipelined data processing. 

8 SOFTWARE PROTOTYPES 

SpaceWire-D have been prototyped in software using the LEON processor of the 

Remote Terminal Controller (RTC, AT7913E) [6]. The essential SpaceWire-D 

functions and the optional segmentation function have been successfully 

implemented. A local clock synchronized with the time-code period triggers the 

sending of data with less than five microseconds accuracy. The CPU usage is low 

when using a data length of 512 bytes. Thanks to the use of the RMAP hardware 

support of the RTC, only the acknowledge packets have to be processed by software. 

The user application interface is based on the configuration of local channels that 

define a logical address and the RMAP transaction configuration.  The schedule is 

programmed with a list of valid channel identifiers for each time-slot. This identifier 

is used to confirm that an RMAP transaction has been executed without errors. 

9 CONCLUSIONS 

SpaceWire-D provides efficient deterministic data delivery over SpaceWire using 

RMAP transactions. This allows to meet latency and bandwidth requirements of the 

onboard network at design time. The protocol provides read/write remote memory 

functions with error detection capabilities. It also provides the foundations to support 

Plug and play, higher reliability and message transfer services.  

SpaceWire-D has been prototyped on space qualified ASICs using software 

implementations with low CPU usage. Hardware implementations will benefit from 

existing RMAP components.  
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ABSTRACT 

This paper describes the application and implementation of the SpaceWire-RT 

protocol in the MARC project: a practical scenario, utilising representative flight 

hardware and next-generation network architectures. A relevant subset of the protocol 

was selected and implemented entirely in software and was adapted to communicate 

with hardware not specifically designed for a SpaceWire-RT system. Additionally, the 

context of a representative flight software system raised issues such as 

synchronisation which were not considered by SpaceWire-RT. The paper closes by 

summarising the lessons for timely and reliable use of SpaceWire that can be drawn 

from this detailed project, considering the complete communications stack from 

subnetwork to application interface. 

1 OVERVIEW OF THE MARC PROJECT AND THE APPLICATION OF SPACEWIRE-

RT 

The Modular Architecture for Robust Computing (MARC) [1] is an ESA GSTP mini-

project being undertaken by SciSys, Astrium UK and SEA. MARC is developing a 

decentralised onboard computer [2] using a SpaceWire network on a backplane and 

SOIS [3] services as a communication backbone with a hierarchical FDIR 

mechanism. The MARC demonstrator architecture is illustrated in Figure 1. 
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Figure 1. MARC Demonstrator Architecture 

The hardware architecture is closely coupled to the software aims of the Generic 

Fault-tolerant Software Architecture using SOIS (GenFAS) software framework, 

developed by SciSys. This provides a PUS-based Data Handling Services, 

communication functions using SOIS, FDIR management and a software deployment 

and upgrade mechanism. The GenFAS software architecture is illustrated in Figure 2. 
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Figure 2. GenFAS Software Architecture 

A crucial part of the SOIS software stack for the MARC project is the provision of a 

suitable SpaceWire service guaranteeing timely delivery of data. To achieve this, 

SciSys applied the proposed SpaceWire-RT protocol [4]. The protocol aims to ensure 

timeliness by utilising time-codes to divide the available network bandwidth in pre-

allocated slots and specifies facilities for reliability and redundancy management. 
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2 ADAPTATION AND IMPLEMENTATION OF SPACEWIRE-RT 

2.1 GOALS AND CONSTRAINTS 

It was a key goal of MARC to implement SpaceWire-RT to provide the required 

SOIS Quality-of-Service (QoS) classes for communication across the MARC 

SpaceWire network, making use of the scheduled SpaceWire-RT configuration. This 

then is to be used as a basis for assessing the implementation and use of the 

SpaceWire-RT draft specification. 

The implementation was constrained to be made only in software, with the ESA 

RMAP [5] and SpaceWire Codec IP cores being employed on the MARC Core 

Computing Modules (CCMs). It was anticipated that implementing SpaceWire-RT 

protocols, including flow control, in software would have performance implications. 

A second constraint was that communication must be supported with legacy RMAP-

based nodes. This has two implications; communication between CCMs and legacy 

nodes must be by using RMAP and that the legacy nodes would have no knowledge 

of the SpaceWire-RT imposed network schedule. As a consequence, the CCMs must 

be able to send and receive RMAP packets with no SpaceWire-RT protocol 

encapsulation and the SpaceWire network communication must be managed such that 

the legacy nodes never asynchronously transmit SpaceWire packets, i.e. it is only in a 

manner synchronised to the SpaceWire network such that it can be taken into account 

when determining the SpaceWire-RT schedule. 

2.2 SELECTION OF SPACEWIRE-RT FEATURES AND ADAPTATIONS 

Based on an assessment of typical information flows and associated QoS required by 

functions in MARC (function chains, FDIR etc), the following features of SpaceWire-

RT were selected for implementing: 

 Basic, Best-Effort, Assured and Reserved QoS (Guaranteed not required). 

 No redundancy (handled at a system level by switching SpaceWire network 

plane in a coordinated manner by the FDIR applications). 

 No group adaptive routing (incompatible with SOIS QoS, not required for 

redundancy and no information flow required multiple, parallel SpaceWire 

links that it provides). 

 No prioritisation of Reserved QoS traffic (not required for information flows, 

subsequently removed from SOIS). 

 No “opportunistic” allocation of unused, reserved time-slots (overcomplicates 

scheduling analysis and unnecessary). 

 Simplified API based on maximum user packet sizes (optimising copying). 

A number of the requirements and constraints of MARC were not met by the 

SpaceWire-RT specification and so the following extensions and adaptations were 

required: 

 Addition of Raw channels (Best-Effort or Reserved QoS, no SpaceWire-RT 

encapsulation) and Raw time-slots (scheduling of raw channels) – used for 

communication with legacy RMAP or PTP-based nodes. 
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 RMAP packets limited so that a transfer fits within the duration of a time-slot. 

RMAP reply packets assumed to be received on channel number + 1 from that 

used for command packet. 

 Extended flow control bit fields (to support larger buffers). 

 No kill mechanism implemented (not fully defined and not able to implement 

in software with existing IP cores). 

 Addition of a controlled configuration mechanism for nodes and routers 

(initialisation and any subsequent re-configurations by each node while 

SpaceWire-RT schedule suspended). 

 Integration with SOIS Synchronisation Service (dual use of SpaceWire time-

codes for time distribution and synchronisation of SpaceWire-RT time slots). 

2.3 IMPLEMENTATION OF SPACEWIRE-RT 

Figure 3 is an illustration of the implementation of SpaceWire-RT. 
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Figure 3. SpaceWire-RT Implementation Block Diagram 

The channel interface from the SpaceWire-RT specification was preserved as much as 

possible, so as to minimise the effort required in any future port to a hardware-based 

implementation. Special consideration was made for handling of RMAP and the use 

of RMAP IP Core as a hardware accelerator. For non-RMAP packets, the RMAP IP 

Core‟s bypass mechanism was used, with additional hardware support functionality 

for calculating CRCs. Of course, because SpaceWire-RT was implemented in 

software on a single processor; send and receive, multiple ports, etc. had to be 

implemented in a serial algorithm. 

The SOIS Memory Access Service mapped straight onto RMAP. For the SOIS Packet 

Service, the CCSDS Packet Transfer Protcool (PTP) [6] was employed with different 

information flows requiring both raw PTP packets and encapsulated in SpaceWire-

RT. 

Finally, tuning of the rate of sending time-codes was required, trading-off between 

resolution of time distribution and maximum rate at which time slots could be 

handled. 
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3 LESSONS LEARNT ON THE USE OF SPACEWIRE-RT 

SpaceWire-RT is both very feature-rich and yet still being prototyped. To make 

practical use in an onboard environment to flight standards requires selection of only 

features appropriate to the development (reducing complexity and cost of validation) 

and to make assumptions, extensions and adaptations to overcome the current status 

of its (incomplete) specification. Standardisation of an appropriate subset and 

recommendations into its use in conjunction with existing and forthcoming 

SpaceWire and SOIS standards will simplify its deployment. 

Use of SpaceWire-RT requires careful management of the complex configuration of 

channels and time-slots across each node in the SpaceWire network. As a SpaceWire 

network is inherently more complex than, say, a MIL-STD-1553B bus, offline 

analysis tools are strongly recommended to analyse communication scenarios, based 

on actual information flows and how they map down to packets on the network, and 

to automatically generate the resulting configuration data. Part of this is addressed by 

the analysis tool being produced by EADS Astrium as part of the MARC project [7]. 

Clearly a hardware-based implementation would be more performant, handling 

send/receive in parallel and multiple ports. However, the decision on the 

hardware/software split should also take into account the adaptability of software. 

4 CONCLUSIONS 

An adapted subset of SpaceWire-RT has been successfully implemented in software 

using hardware-support functions, integrated with SOIS services and is being used in 

the MARC demonstrator to provide managed timely communications across a 

SpaceWire network in a decentralised onboard computer. 
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1 INTRODUCTION 

The simulation is an important task for device design, distributed systems building and 

network protocols development. Therefore, previously we have developed the SpWNM [1] 

intended for simulation of SpaceWire networks. In the course of further development on this 

project we have created SpaceWire Network Simulator (SpaNSim). 

The SpaNSim is intended for designing, modeling and analyzing the SpaceWire networks of 

any topologies, and contains basic models of terminal node, routing switch and link. The 

SpaNSim has all features described in [1]: it allows designing and simulation of SpaceWire 

networks; implements wormhole routing, time flow and distributed interrupts mechanisms, 

generation and transmission of data packets; estimates workload of channels and devices; 

provides graphical networks design with MS Visio. 

Unlike the SpWNM, SpaNSim: 

 allows the user to create new device models and to write applications for them; 

 allows to add new types of devices operating on different transmission standards and to 

connect these devices with SpaceWire networks; 

 displays state of any device’s internal element: buffers content, register values and so 

on; 

 contains a lot of modules for network analyzing: for example, one can see an in-depth 

information for each packet; can analyze in detail the network at level of bits, symbols, 

packets or particular events; 

 displays all bits transferred through the channel and shows distorted bits; 

 allows to describe the networks not only graphically, but with usual C++ projects, for 

example, in Visual Studio. 

The SpaNSim is implemented in C++ and based on Qt and SystemC. 

2 NETWORK DESIGN AND DEVICE SETTING 

With SpaNSim you can graphically design the networks, using MS Visio. Also, the SpaNSim 

provides you to configure parameters and state of any device’s internal elements in interactive 

mode: buffers, registers, memory, clocks, and so on. It can be done during the network design 

in MS Visio or during the modeling. For example, you can check or change device’s buffers 

content after the modeling performed for some period. 
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Fig.1. Network design and device setting in MS Visio. 

3 CREATING NEW DEVICES 

The SpaNSim provides you to create new device models. The new model can be implemented 

on basis of the existing one or without usage of existing models. For example, new device can 

be created by changing links of the terminal node or changing the routing switch’s arbitration 

or buffering scheme, channels number, and so on. For fast development, SpaNSim provides a 

set of ready-to-use functional units, so you can create a new device, connecting them with one 

another and setting their parameters. 

Also you can write applications for the devices. For example, you can create an application 

operating inside the terminal node and sending/receiving data packets and control codes. For 

this, you should not know the node in details, you will only implement the application 

algorithm and use an interface between the application and node. Using this interface, your 

application will send or receive data packets, change transfer rate and so on. Each application 

will be presented as a independent program unit written in C++ or SystemC and attached to 

the node, so you can write various applications and estimate how they operate in the 

SpaceWire network. 

In SpaNSim it is possible to add new types of devices. For example, one can implement a 

bridge binding the SpaceWire network with another ones: MIL-STD-1553, CAN, RS422-485 

and so on. Hereby, networks of devices operating on different transmission standards can be 

implemented and modeled together. 
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4 ANALYZING SIMULATION RESULTS 

The SpaNSim includes a lot of modules for analyzing modeling results. Using them the user 

can: estimate minimum, average and maximum propagation time of data packets, interrupts 

and time-codes; see information about any packet or control code transfer; see symbols flow 

transferred through the channels; see bit flows and find out bits distorted under the noise; get 

information about all occured timeouts. Also, the SpaNSim automatically builds charts 

displaying minimum, average and maximum propagation time for data packets and control 

codes. 

 
Fig.2. Analysis of data packets propagation time and displaying bits transferred through the SpaceWire channels. 

Under development of new devices, the user can specify events and graphical dependencies he 

is interested in, and they will be appended to the results.  

5 SPANSIM AND OPNET MODELER 

The OPNET Modeler is one of the most popular software for network design and simulation. 

Therefore we have compared it with the SpaNSim relatively to SpaceWire networks 

simulation and analyzing. 

In the default configuration of OPNET Modeler, there are no SpaceWire models ready to use. 

To simulate SpaceWire networks with OPNET, firstly you should have developed at least all 

basic devices: terminal node, routing switch, link and channel. For this, it is needed to write a 

lot of code and build finite-state machines implementing sending and receiving of data packets 

and control codes, supporting wormhole routing, adaptive group routing and so on. If you are 

going to transfer packets symbol-by-symbol (for example, to implement a wormhole routing), 

in OPNET each symbol should be defined as a packet itself. Bit-level transferring and 

analyzing (e.g., in channel with a noise) will be more difficult for implementation in the 

Modeler. In the SpaNSim, all of this is already implemented. 

In the table below you can see comparison between some general characterictics and features 

of the OPNET Modeler and SpaNSim. 

What is compared SpaNSim OPNET Modeler, v. 14.0 

Network graphical design Yes Yes 

Device graphical design No Yes 

Setting of devices and their 

components 
Yes Yes 

Displaying device’s buffers 

and registers content 
Yes No by default 
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Programming languages used 

for device development 
C++, SystemC 

Primarily C. It is possible to 

use C++ and scripts. 

Modeling core performance, 

in events per second 
Approximately equal 

Information units 
Symbols inside devices and 

bits inside the channels 
Packets formatted by the user 

Modeling results provided by 

default 

Analysis of each packet and 

control codes. Analysis of 

minimum, average and 

maximum propagation times. 

Displaying transferred and 

distorted bits. Displaying a 

content of internal buffers 

and registers.  

Animation for packets 

transfer. Minimum, average 

and maximum propagation 

times. Propagation time and a 

route for each packet. 

Modeling results defined by 

the user 

Any additional charts and 

text messages 

Any additional charts and text 

messages 

Modeling the networks of 

different protocols 
Yes Yes 

 

By default, the OPNET Modeler does not support bit-level transfer and analysis, and does not 

provide detailed analysis of device buffers and registers. In SpaNSim, all these features are 

implemented. 

In the Modeler, if you want to write an application for some device, you will usually change 

the device code. In the SpaNSim, devices provide convenient interfaces for applications, so 

you should not think about the device code, you only implement the application’s algorithm. 

Also, a new device in the SpaNSim is developed on the high-level language (C++ or SystemC) 

and with some ready-to-use modules. During programming, the user has a direct access to all 

device parameters, and he can use intuitive data types like «simulation time», «symbol», 

«packet», «routing table», and so on. In the OPNET Modeler, any device component is 

described with finite-state machine, and the user puts some C code in the states. Access to the 

device parameters is not as clear as it in the SpaNSim. So, in the OPNET Modeler it can be 

difficult to design a very detailed device model. 

6 CONCLUSIONS 

The SpaNSim provides graphical design, simulation and analysis of SpaceWire distributed 

systems. It has a set of ready-to-use devices and allows you to create new device models 

operating on SpaceWire or different standards. As a result of simulation, it is possible to 

estimate a wide range of characteristics required for building the distributed systems, and to 

define systems’ parameters. 
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ABSTRACT 

This paper is concerned with a fault tolerant routing topology and a protocol for 

SpaceWire networks on board spacecraft. A fault tolerant routing topology is 

proposed, which is comprised of cross strapped central SpaceWire router core. The 

central core is cross strapped in such a way that no single faulty node results in getting 

down the whole system. In addition, a routing protocol is proposed for the support of 

dynamic updating of the routing table. The main characteristic of the routing protocol 

is that any faulty node is immediately isolated from the rest of the system.          

1 INTRODUCTION 

Space systems require a high degree of reliability, which can be achieved via 

redundancy. SpaceWire is a full duplex, serial, point to point data communication 

standard. It is a high speed serial bus with speed limit up to 400Mbp/s and uses low 

voltage differential signalling (LVDS) for the transmission of data. The SpaceWire 

standard describes the protocol with respect to physical, signal, character, exchange, 

packet and network levels [1].  

Fault tolerant routing provides redundant paths for routing of packets during the 

failure of the primary routing node. Group adaptive routing supports link redundancy 

only, but in case of a failure in any routing node the whole system gets down, which is 

not acceptable for space missions. In order to enhance the reliability of SpaceWire 

networks, a fault tolerant routing topology is proposed, which is comprised of cross 

strapped central SpaceWire router core. The central core is cross strapped in such a 

way that no single faulty node results in getting down the whole system. In addition, a 

routing protocol is proposed, which supports dynamic updating of the routing table. 

The main feature of the routing protocol is that any faulty node is immediately 

isolated from the rest of the system.          

2 FAULT TOLERANT ROUTING TOPOLOGY 

A fault tolerant topology scheme using SpaceWire is presented in Figure 1, where 

each node is considered as dual redundant, i.e. primary and redundant. Table 1 shows 

the failure mode effects analysis (FMEA) for the fault tolerant routing topology. 
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Table 1. Failure Mode Effects Analysis of the Fault Tolerant Routing Topology 

S. 

No.  

Possible Failure Effect on the System Remedy 

1 Node to router Link Failure Loss of Primary Link Switch to similar node 

redundant link  

2 Node Failure Loss of Primary Node Switch to redundant node 

3 Router to Router Link Failure Loss of Primary Link Switch to redundant link 

4 Router Failure Loss of Primary Router Switch to redundant 

router 
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Figure 1. Fault Tolerant Routing Topology 

 

The nodes can be hot redundant or cold redundant. Failure of any hot or cold 

redundant nodes will not affect the overall system performance. In Figure 2, if a link 

from node-1 primary to the SpaceWire router primary fails, it will switch to the 

node-1 redundant link and will route the packets via the redundant router. Similarly if 

node-1 primary fails, then it will switch to redundant node-1 and will route the 

packets via the primary router. If the link between the routers fails it will switch to a 

redundant link. In case of router failure the links between routers and node to router 

can be used for the exchange of routing information or for the transfer of data packets. 
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Figure 2. Failure of a Node Link 

3 FAULT TOLERANT ROUTING PROTOCOL 

In order to support the fault tolerant routing topology presented in the previous 

section, a fault tolerant routing protocol is required. Table 2 shows the additional 

message exchange for the fault tolerant routing topology.  

Table 2. Fault Tolerant Routing Protocol Keep Alive Messages 

Node/Router Node-1 (P) Node-1 (R) Router (P) Router (R) 

Node-1 (P) No Msg Exchange No Msg Exchange Node-1(P) says to 

Router(P): I am active 

Node-1(P) says to 

Router(P): I am 

active 

Node-1 (R) No Msg Exchange No Msg Exchange Node-1(R) says to 

Router(R): I am active 

Node-1(R) says to 

Router(R): I am 

active 

Router (P) Router (P) says to 

Node-1(P): I am 

active, Not Busy, 

Node-1(R) active, 

Router(R) active. 

Router (P) says to 

Node-1(R): I am 

active, Not Busy, 

Node-1(P) active, 

Router(R) active. 

No Msg Exchange Router (P) says to 

Router(R): I am 

active, following 

links available or 

busy or faulty. 

Router (R) Router (R) says to 

Node-1(P): I am 

active, Not Busy, 

Node-1(R) active, 

Router (P) active. 

Router (R) says to 

Node-1(R): I am 

active, Not Busy, 

Node-1(P) active, 

Router (P) active. 

Router (R) says to 

Router (P): I am 

active, following links 

available or busy or 

faulty. 

No Msg Exchange 
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There are mainly three types of messages: node to router, router to node (reply 

message) and router to router. The formats of these messages are designed in such a 

way that there is no additional overhead on the network performance. For the support 

of these packets at network layer, a source logical address is used. Table 2 presents 

the partial routing table of the primary router. In case of a link failure between the 

primary router and the primary node-1 no keep-alive messages are exchanged 

between them and the router considers this node as a dead node. It also informs the 

redundant node with logical address 10 that the primary node is dead. Now the 

redundant node starts sending packets to others nodes via the primary router. If the 

primary node-1 is up again, then the router updates the entry status from down to 

active and restores the communication with the primary node-1.  

Table 3. Partial Routing Table for the Primary Router 

Source Logical 

Address 

Destination Logical 

Address 

Out port Priority Status 

5 15 3,9,10  High Down 

10  Low Active 

5 20 4,9.10  High Down 

10  Low Active 

5 25 5,9,10  High Down 

10  Low Active 

5 30 6,9,10  High Down 

10  Low Active 

5 35 7,9,10  High Down 

10  Low Active 

5 40 

 

8,9,10  High Down 

10  Low Active 

 

4 CONCLUSIONS 

The presented fault tolerant routing topology and its protocol fulfil the requirement of 

space systems. The fault tolerant architecture considered here is for two routers and 

eight nodes but it can be extended for any numbers of nodes. Future work will involve 

the implementation of this conceptual design. 

5 REFERENCES 

1. European Corporation for Space Standardization, “Space Engineering SpaceWire-

Links, nodes, routers and networks”, 31 July 2008. 

SpaceWire Networks and Protocols

410



A SOFTWARE ANALYSIS TOOL SUPPORTING FDIR MANAGEMENT FOR 

SYSTEMS WITH SPACE WIRE NETWORKS –MARC PROJECT  

Session: Space Wire Missions and Applications 

Short Paper 

Omar Emam, Allan Whittaker, Simon Lentin, and Tony Jorden 

EADS Astrium, Stevenage, Hertfordshire, SG1 2AS, UK 
Wahida Gasti 

ESA/ESTEC, 2200 AG Noordwijk ZH, The Netherlands 
E-mail: omar.emam@astrium.eads.net , allan.whittaker@astrium.eads.net, 

simon.lentin@astrium.eads.net, tony.jorden@astrium.eads.net, wahida.gasti@esa.int 

ABSTRACT 

A custom-designed off-line software tool has been developed for analysing the Space 

Wire “SpW” network performance of a fault-tolerant system, based on the “Modular 

Architecture for Robust Computing”(MARC) concept, after the occurrence of a Fault 

Detection, Isolation and Recovery (FDIR) event. The tool also generates the FDIR 

and re-configuration tables required by the system‟s onboard FDIR management 

software. This tool is referred to as the MARC „FDIR Analysis Tool‟ which has been 

devised to support the design and implementation of MARC- based systems. The 

MARC concept is outlined, and the role of the “FDIR Analysis Tool” is described in 

this paper.  

1 INTRODUCTION 

The MARC project [1] aims at developing a fault-tolerant decentralised onboard 

computing architecture, using a high-reliability SpW network as its communication 

backbone. This is an UK-GSTP/ESA-funded project undertaken by Astrium UK, 

SciSys, and SEA. The FDIR Analysis tool has been developed by Astrium, as part of 

its role in specifying and developing the MARC FDIR strategy and related 

architecture. The tool will be used extensively in Astrium‟s validation of the MARC 

concepts and designs, using the demonstrator hardware [2] and software, towards the 

end of 2010.  

The complexity of advanced networking systems, with their multitude of parameters 

to be taken into account, makes it almost impossible to design an optimum network 

solution simply by manual inspection. The use of some form of system analysis tool 

has therefore become essential to support the design of complex computing networks 

where there are multiple data exchange paths, with different data traffic characteristics 

and constraints. 

MARC is one such advanced computing network system for which the MARC „FDIR 

analysis tool‟ was conceived, as an off-line software application that would be run at 

the design phase of this complex system. The tool is used to analyse the suitability of 

a given MARC SpW network, in terms of its throughput and latency, to meet the 
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system requirements. The tool is also used to enable the user to run FDIR scenarios 

which are intended to analyse the system performance after a fault recovery and 

highlight any non-conformances. The tool then generates the FDIR and re-

configuration tables associated with these FDIR conditions. The resulting tables are 

used by Astrium‟s MARC „FDIR Manager‟ [4] which is implemented by SciSys as 

part of their Generic Fault-tolerant Software Architecture “GenFAS” software 

framework [1] developed for MARC. 

2 FDIR ANALYSIS TOOL AS PART OF MARC 

In a MARC system multiple computing, memory, and Input/output (I/O) nodes (or 

modules) are interconnected via a high-reliability SpW network. MARC is a scalable 

architecture. In its simplest form it resembles a standard on-board computing system, 

with a set of prime and redundant nodes/modules, all connected to single pair of prime 

and redundant SpW routers to form a simple single-hop (single router) network. In 

this case it is relatively simple to ensure, by inspection, that the resulting network will 

meet the specified performance requirements. On the other extreme, up to 24 nodes of 

different types (computing, memory, and I/Os) can be connected to a number of 

chained routers to form a complex heterogeneous network. The problem of designing 

the system is made more difficult since it is possible to have multiple data paths 

between nodes with different packet lengths as well as different data rates and link 

speeds. In addition, there may be requirements on data traffic prioritisation, in that 

some data packets, such as command, Health-Status or Timing-Data packets have to 

be routed from source to destination within a restricted timing window. In this case, 

designing a system that guarantees the specified performance cannot be achieved 

without the aid of some analysis tool. Finally, the tool has to enable the user to 

generate the FDIR and re-configuration tables required by “FDIR manager” onboard 

software which is used to implement the FDIR strategy.  No off-the-shelf tools have 

been identified which meets these specific needs of a MARC system. In particular, a 

network analysis tool for MARC must include the capability to define the parameters 

for the exchange of the Health Status messages necessary for implementing the 

MARC FDIR strategy.  

3 HOW THE TOOL 

WORKS 

The tool takes as its input 

a user defined file that 

specifies the SpW network 

architecture being 

considered for analysis. 

The first stage of this 

analysis is to determine 

what all possible network 

connections exist between 

the various nodes. The tool 

also checks that the 

network conforms to the MARC standard network architecture - see following figure, 

as this is important for generating the FDIR related tables. Once the tool has 

established that any node can connect to any other node via at least two paths, the 

network performance analysis can then start. This analysis is used to validate the 
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robustness of the MARC network in terms of fault tolerance, by enabling the user to 

mimic failure and failure recovery in the system and identify any non-compliances in 

its performance after recovery. For example swapping a prime computing node on one 

router with a redundant node on another router and showing that the resulting network 

still meets the system performance requirements. 

By performing the validation for all possible network failures and failure recovery 

conditions the tool is able to generate a set of FDIR and configuration tables that the 

on-board FDIR Manager software uses to indentify a fault recovery procedure. The 

onboard software combines the entry in the table, pointing to the current 

configuration, with the identifier of the diagnosed fault to generate a pointer. This 

allows it to identify an entry in the FDIR and configuration table that defines the 

configuration of the recovered system. 

3.1 SPACE WIRE NETWORK PERFORMANCE ANALYSIS 

The network performance analysis has two main 

objectives: to analyse the throughput of the 

network and to determine the latency of data 

packets passing through it. In the analysis, the tool 

allows for packets of different sizes and different 

rates, as well as two different Space Wire link 

frequencies (see below). In addition, the tool 

permits multiple data communication channels 

between any node and any other node, which 

creates a „virtual network‟. This is important since 

it enables the user to allocate the different data 

channels different priorities for a SpW-VN [5] 

based system, or different time slots for a SpW-

RT based system [3]. 

In summary, the key steps for network 

performance analysis are: 

Throughput: 

 Determine which of multiple possible paths 

are used for a node-node connection. 

 Calculate and display the percentage loading 

contribution from all data communication 

channels in a link. 

 Flag if the total loading percentage of a link 

exceeds a defined threshold. 

 

Latency: 

 Calculate Latency for a particular path (sum of router & link contributions). 

 Routers –calculate a packet‟s port-to-port time: worst case, all other ports are 

already occupied. 

 Latency is assessed for each data communication channel (of a virtual network, if 

there are multiple paths per link). 
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Both the latency and the throughput takes into account that the network can be 

heterogeneous in terms of SpW link frequencies, being either 100MHz or 10MHz. 

Latency Algorithm: 

(The following values are based on using Atmel 10X SpW router): 

 

Tsl  switching latency: a constant value of 133 nanoseconds, 

Tppl  port to port latency: a constant value of 547 nanoseconds 

Tbpb  bits per byte:  a constant value of 8 bits. 

Tbpp  bytes per packet: 32 – 1M bytes (typically 1024) 

Tbps bits per second in the range of 80-70% of SpW link frequency. 

Tppr  ports per router: 8 ports 

 

Tfbd first byte delay:    Tsl + Tppl  

Tspb seconds per byte:   Tbpb / Tbps 

Tspp  seconds per packet:   Tspb x Tbpp 

Ttropp  time router occupied per port:  Tspp  + Tfbd 

 

Tmtro  max time router occupied:   Ttropp x (Tppr - 2) 

3.2 MARC FDIR AND CONFIGURATION TABLES GENERATION 
The operator starts the FDIR and configuration tables‟ generation by selecting the Generate 

Tables function in the Traffic Results Window. The system performs the following 

sequence of actions to generate FDIR tables for the pre-defined logical network: 

1. Generate a bit pattern in a 64-bit word to represent the defined system „start‟ 

configuration word, (i.e. assuming no failures), where a 1 indicates an active 

component and 0 represents an inactive component. When the flight system is in 

the corresponding configuration, the FDIR manager uses this as an “index” to the 

FDIR data it needs. For that configuration word, the router tables are then written 

into the Configuration Table. 

2. For that configuration an element to be simulated as the 'failed' element is 

selected. The tool works out the new set of active elements, given the presumed 

failure and the known redundancies. The tool then analyses the new configuration 

to see whether it meets throughput & latency constraints.  If not, it will write out a 

special configuration word defining a “safe mode” to be adopted when this faulty 

configuration is reached and sets a bit representing a „non-operational flag‟. 

3. If the new configuration does meet throughput and latency constraints, the tool 

will write the configuration to the FDIR and configuration Tables. The sequence 

repeats from step 2, but with a new element chosen to be the 'failed' element. This 

continues until all elements in turn have taken the role of the 'failed' element.  

4. When all elements for that initial start up configuration have been exhausted then 

a new 'start' configuration is defined, and the whole sequence is restarted from 

step 1. The overall process finishes when all combination of failures have been 

exhausted for all the start configurations. The failures should be cumulative, such 

that, for example, a 12 node system results in 2
12

 configurations. 
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4 WHAT THE TOOL LOOKS LIKE 

The tool expects the system architecture to conform to that agreed within the MARC 

framework in that it consists of a number of different types of nodes which are 

interconnected via SpW links. The nodes may be processor platforms, memory 

modules, I/O modules, routers, etc.  The user specifies the number and type of nodes 

as well as the interconnect between them. The tool includes a basic model of each 

type of node. The analysis tool has the following key user interaction stages: 

4.1 THE CONFIGURATION INPUT FILE  

This represents a file of network configuration data which is created before running 

the analysis tool. It contains text which defines what each port of each element in the 

physical network, is connected to. The format is:  

<Router>,<Port>,<Destination>,<Link_Speed> 

For example: 

RTR01,1,RTR03,100 

Meaning: Router 1, port 1 is connected to Router 3 and has a link speed of 100 MHz 

ND01,1,RTR01,10 

Meaning: Node 1, port 1 is connected to Router 1 and has a link speed of 10 MHz 

4.2 THE PHYSICAL NETWORK WINDOW  

This is the first stage in the network analysis process. Here the operator loads the 

“Configuration Input file” which the analysis tool then examines by performing some 

context checking to ensure that there were no obvious errors in the configuration file. 

From the GUI, the user can manually select or modify the configuration of the prime 

and redundant routers in the network.  The analysis tool then determines the number 

of links (hop-numbers) between any two nodes on the network and displays it as a 

matrix. The user can then select an individual cell of the matrix to get information on 

the network links associated with that node-to-node data path. 

4.3  LOGICAL NETWORK WINDOWS 

This window allows the operator to assign 

roles (functions) to each of the nodes in 

the physical network, including whether 

the role is prime or redundant. The 

operator is also given the facility to define 

the routes between prime nodes and what 

level of data traffic will be carried. 

4.4 TRAFFIC RESULTS WINDOW 

This window allows the operator to 

initiate analysis of the pre-defined logical 

network. It is from this window that the 

FDIR and configuration tables‟ generation 

can be initiated. 
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5 CONCLUSION 

A complex SpW network based computing system could not realistically be designed 

and implemented without the aid of some analysis tool. In the case of MARC the 

„FDIR analysis tool‟ is an essential part of the system and is key to generating the 

FDIR and configuration tables that lie at the heart of the MARC FDIR strategy. 

6 REFERENCES 

1. Gasti et al, “Modular Architecture for Robust Computation – MARC”, ISC2008 

Conference.  Nara-Japan, Nov 2008 

2. Senior et al, “Modular Architecture for Robust Computation – MARC”, ISC2007 

Conference,  Dundee-UK, Sept 2007 

3. Fowell et al, “the Adaptation and Implementation of Space Wire-RT for the 

MARC Project”, ISC2010 Conference, St.Petersburg-Russia , June 2010 

4. Emam et al, “An FDIR Strategy based on Message Exchange Approach to 

Implement Autonomous FDIR Management on the MARC System”, DASIA 2010 

Conference, Budapest- Hungary, June 2010 

5. Barry et al, “Virtual SpaceWire Networks: A Mechanism for Real-Time 

Applications”, SpaceWire Working Group Meeting 13, ESTEC - Noordwijk - The 

Netherlands, Sept 2009 

SpaceWire Networks and Protocols

416



THE SPACEWIRE-PNP PROTOCOL IN THE SOIS PLUG-AND-PLAY 

ARCHITECTURE 

Session: SpaceWire Networks and Protocols 

Short Paper 

Peter Mendham, Stuart Fowell 

SciSys UK Ltd, Clothier Road, Bristol, BS4 5SS, UK 
Chris Taylor 

ESA/ESTEC, 2200 AG Noordwijk ZH, The Netherlands 
E-mail: peter.mendham@scisys.co.uk, stuart.fowell@scisys.co.uk, 

chris.taylor@esa.int 
 

ABSTRACT 

The SOIS architecture has been steadily evolving for a number of years and includes 

an effort to incorporate the features of “plug-and-play” systems which are relevant to 

onboard communications. This paper reviews the role that plug-and-play can play in 

an onboard system architecture, and within SOIS more specifically. The SOIS plug-

and-play architecture is described and the role of the subnetwork is highlighted 

specifically. The SpaceWire-PnP protocol is assessed against the requirements for a 

SOIS implementation, and is presented as an exemplar of a subnetwork plug-and-play 

protocol. 

INTRODUCTION 

The SOIS plug-and-play architecture has been steadily evolving for a number of 

years, with input from a range of studies and prototyping activities. Additionally, 

recent work has benefited from the experience of NASA with Space Plug-and-Play 

Avionics (SPA), clarifying the alignment of such international efforts with the SOIS 

architecture. As an onboard communications technology with growing popularity, 

SpaceWire has always been carefully considered within the SOIS plug-and-play 

architecture and previous work has described potential mappings of SOIS plug-and-

play onto SpaceWire [1]. Concurrently, the SpaceWire-PnP protocol is being 

developed with the intention of providing standard mechanisms for carrying out 

crucial network management and configuration tasks on SpaceWire networks, 

including device and network topology discovery. 

Section 00 begins this paper by reviewing the plug-and-play problem within the larger 

context of onboard system architecture, from applications to hardware. The SOIS 

plug-and-play architecture is the focus of this discussion, described in Section 0, 

where the roles that a subnetwork plug-and-play protocol must fulfil to meet the 

requirements of SOIS are highlighted. In Section 00, SpaceWire-PnP is applied within 

the SOIS architecture as an exemplar subnetwork protocol, with an examination of the 
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portions of the architecture that are subnetwork specific, and those that are mission 

specific. Section 00 concludes the paper. 

ONBOARD PLUG-AND-PLAY 

The SOIS Green Book [2] defines plug-and-play as “the set of automated mechanisms 

used to discover, learn the capabilities of, and provide access to a device in a 

spacecraft‟s onboard (sub-)network”. One of the goals of SOIS is provide standards 

for such mechanisms to improve the interoperability and portability of onboard 

systems. An implementation of SOIS is typically software-centric, although this does 

not have to be the case. We will use software terminology here, beginning with 

onboard applications. 

The focus of device access by an onboard application is the functional characteristics 

of that device type. For example, accesses on a sun sensor will be largely concerned 

with acquiring the position of the sun, whilst those on a reaction wheel will be largely 

concerned with commanding the wheel torque. The application is not concerned, 

except by necessity, with the underlying mechanism required to acquire the sun 

position or command the wheel torque. By abstracting the generic operations of a 

device type, or class, from its underlying access mechanisms, application software can 

be made more portable. Such a technique is known as device virtualisation, and forms 

an integral part of plug-and-play strategies on many platforms. 

The presentation of a virtual device interface to an application relies on two processes: 

access to the device, potentially using some device-specific protocol; the adaptation of 

the semantics of the device access mechanisms to match the expected semantics of the 

virtual device. In turn, the device-specific protocol will rely on the mechanisms 

provided by the technology used to communicate with the device, i.e. the subnetwork. 

The definition of the Device-Specific Access Protocol (DSAP) and translation 

mechanisms for virtualisation could be implemented directly into software (or 

hardware). More flexibly, however, they could be described in a structured, machine-

readable form such as an Electronic Data Sheet (EDS). The use of an EDS permits the 

automatic generation or tailoring of implementations handling the DSAP and/or 

virtualisation translations. 

Which devices are present in the system, may be statically “hard-coded” into the 

communications software, or it maybe dynamically determined at run time. In the 

case of a static system, it may be still be necessary to verify the configuration of 

services against which devices are logically present on the subnetwork. This 

verification requires the same underlying subnetwork mechanism: to be able to 

discover and uniquely identify all devices on the subnetwork. If the subnetwork 

requires management and configuration in order to be able to access and use devices 

to their full potential, this must be carried out, according to some mission-specific 

policy. The dynamic detection of devices also raises the possibility of dynamically 

utilising an EDS, hosted by the device, to suitably adapt or tailor the DSAP and/or 

virtualisation translations associated with the device. 

The subnetwork must therefore support standard mechanisms to support the access of 

devices, which must be supported by plug-and-play mechanisms such as device 

discovery and the management of subnetwork configuration. 
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THE SOIS PLUG-AND-PLAY ARCHITECTURE 

The SOIS Plug-and-Play architecture instantiates the major features of the 

mechanisms described in Section 0 in explicit service interface descriptions. It is 

expected that these service interfaces will be implemented by suitable services, 

relying on the underlying hardware or driver software for a subnetwork such as 

SpaceWire. An example onboard software architecture implementing the SOIS plug-

and-play services is depicted in Figure 1. 
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Figure 1: Onboard Software Architecture Using SOIS Plug-and-Play 
The area marked as “Subnetwork Implementation” corresponds to the SpaceWire 

interface, and SpaceWire protocol handling. This layer is the appropriate place to 

handle subnetwork plug-and-play which must support: device discovery functions 

sufficient to support the subnetwork Device Discovery Service (DDS) and support for 

managing and configuring all standard subnetwork features. To permit dynamic 

configuration using an EDS, subnetwork plug-and-play should support a standard 

mechanism for querying an EDS from a device. 

Whereas the plug-and-play protocol and mechanisms can be generic for a subnetwork, 

actual subnetwork management activities may well be specific to a mission. To reflect 
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this, the policy guiding the management and configuration of a subnetwork has been 

explicitly depicted in Figure 1. 

SPACEWIRE-PNP FOR SUBNETWORK PLUG-AND-PLAY 

The SpaceWire-PnP proposal [3] was initially developed by one of the authors whilst 

at the University of Dundee [4-7] and has continued with input from SciSys [8-9] and 

the SpaceWire community. The core of SpaceWire-PnP is the following services: 

 Device Identification, which provides basic information about devices such as 

their vendor ID and how many ports they have. 

 Network Management, which permits the discovery of devices and network 

topology. 

 Link Configuration, which permits the configuration of SpaceWire links on a 

device. 

 Router Configuration, which permits the configuration of routing features and 

applies only to SpaceWire routers. 

Additionally, SpaceWire-PnP is extensible: so-called “capability services” provide 

for, amongst other things, generic data sources and sinks. The simplest source service 

was designed considering the requirement for hosting EDS data in a device. 

As can clearly be seen, the services provided by SpaceWire-PnP meet the 

requirements for the SOIS plug-and-play architecture. Device Identification and 

Network Management services of SpaceWire-PnP provide all functions necessary for 

the subnetwork independent SOIS DDS, although there is an opportunity to make 

these correlate more closely. The Link and Router Configuration services provide for 

the subnetwork specific configuration and management of all SpaceWire features 

identified in the SpaceWire standard. 

SUMMARY AND CONCLUSIONS 

The SOIS plug-and-play architecture supports the application of plug-and-play 

principles, including virtualisation and device discovery using static and or dynamic 

methods. This architecture relies on device discovery features provided by the 

subnetwork, which must also take responsibility for management and configuration of 

subnetwork resources. This combination of discovery, configuration and management 

functions must be met by suitable subnetwork plug-and-play mechanisms, such as 

SpaceWire-PnP. 

The flexible topology, peer-to-peer approach and distributed resources of SpaceWire 

are, in many ways, a superset or more general case of the characteristics provided by 

other communications media. The SpaceWire-PnP proposal is therefore a good model 

for the development of other plug-and-play protocols. Ongoing work at SciSys is 

prototyping key elements of SpaceWire-PnP, including the principles behind device 

discovery and electronic data sheet use. This work clearly indicates the potential 

power and flexibility of applying SpaceWire-PnP within the SOIS plug-and-play 

architecture. 
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ABSTRACT 

 

A large variety of new applications could be implemented in future space missions by 

combining the SpaceWire and IEEE 802.11 communication protocols. Converting 

SpaceWire packets into IEEE802.11 packets presents challenges due to bridging a 

protocol designed for point-to-point links with a protocol usually operating in an ad-

hoc mode.  

 

This paper presents an approach to developing a wireless interface for SpaceWire on-

board networks for the purpose of inter-satellite communication in networked 

distributed satellite systems. The tradeoffs of a bridge design supporting 

SpaceWire/IEEE802.11 data transfers are discussed. 

 

1. INTRODUCTION 

 

Future networked distributed satellite systems (DSS) will be formed of satellites with 

cross links and on-board autonomy capabilities. In these systems, a spacecraft can 

gather information from and aggregate its resources with other spacecraft to perform 

tasks. In such a context, inter-satellite communication is an important feature of the 

satellite network [1, 2]. A distributed satellite system for space weather monitoring is 

proposed in [3], in which satellites are able to exchange data via an inter-satellite link 

(ISL) and a master node is selected to communicate with ground. In case if the master 

satellite fails, the network will need to reconfigure in order to select another node as 

master or incorporate a new member satellite. 

 

SpaceWire is a recently developed on-board spacecraft communication protocol, 

which has already been deployed in a number of space applications. In contrast, the 

IEEE802.11 wireless standard is a mature terrestrial protocol that offers a wide range 

of services. Both standards have attributes supporting scheduling, flow control and 

buffering that can be exploited to provide a communication medium enabling high-

speed fault-tolerant wireless networks. SpaceWire has a good electromagnetic 

compatibility (EMC) performance, is easy to implement, and supports fault-tolerance 

by providing redundancy to networks. The use of SpaceWire as the communication 

protocol for intra-spacecraft components can improve robustness and 

reconfigurability by adding fault-tolerance on board each spacecraft within a DSS 

network. These attributes make SpaceWire an attractive communication protocol on 

board spacecraft in distributed satellite systems [3]. 
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This paper presents an approach to developing a wireless interface for SpaceWire on-

board networks for the purpose of inter-satellite communication in future networked 

DSS [2, 3]. The work presented in this paper is concerned with the design of a bridge 

to connect a SpaceWire router to a Wireless transceiver. The bridge contains a module 

that is used to convert SpaceWire format into IEEE802.11 packets. A synchronization 

module is included to manage the flow between the router and the bridge whilst the 

Gaisler GRLIB memory controller [4] provides off-chip access to the SpaceWire 

router and modules.  

2. SYSTEM OVERVIEW 

 

A high-performance computing reconfigurable system-on-a-chip (SoC) design is 

proposed in [3] to support data processing and inter-satellite communication on board 

satellites. The SoC is centred around the LEON3 processor, which is used to run 

software applications and AMBA2 is used as the on-chip bus system as shown in 

Figure 1. An IEEE802.11 transceiver intellectual property (IP) core is also included 

for inter-satellite communication. As IEEE802.11 based communications are 

asynchronous, a direct memory access (DMA) core is added to the design to control 

the data transfers between the memory and the wireless transceiver.   

 

SpaceWire is a high-bandwidth and fast switching protocol in which link connection, 

as well as error recovery, takes 20 microseconds. The protocol is flexible in terms of 

network topology, there is no limitations in the packet size, and the data rate is only 

constrained to receiver‟s buffer size. In contrast, the IEEE 802.11 standard is a 

contention-based network protocol and, depending on the standard, the bandwidth is 

limited to 20 or 40 MHz. Packet size is limited to 2310 bytes and the link setup 

between two links in IEEE 802.11 nodes takes a minimum of 250 µs to start. In that 

time a SpaceWire node could send in excess of 200 data characters, when operating at 

20 MHz. As a result, buffer management and storage are required to avoid bottlenecks 

in the SpaceWire networks while the wireless transceiver starts up a link. The DMA is 

able to connect AMBA ready devices to the memory controller, and the bridge 

interfaces with the DMA via the AMBA AHB bus. 

3. BRIDGE DESIGN 

 

3.1 Link Connection and Synchronisation 

 

The IEEE 802.11 wireless network standard, often referred to as WiFi, is defined at 

the Medium Access Control (MAC) and Physical (PHY) layers [5]. The IEEE802.11 

physical layer can either be based on the Orthogonal Frequency Division 

Multiplexing (OFDM) or spread spectrum. Due to bandwidth scarcity in wireless 

networks, a common approach is to use a multiple access scheme to share the 

bandwidth of a communication link between several nodes. The MAC layer ensures 

that frames are delivered error free, and adds addressing information to the 

transmitted frames. 

Inter-frame timing constraints are introduced at the IEEE 802.11 MAC layer in order 

to support high data rates. Before a node is allowed to initiate a transmission, it senses 

the channel to verify whether it is free for a predefined minimum period called 

Distributed Inter Frame Space (DIFS). If the channel is busy, a random back-off 

interval is calculated to determine the waiting time before the sending node tries to 
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access the channel again. This is followed by a flow control mechanism between the 

sending and receiving nodes. SpaceWire has a flow control for link connection as 

well, however once the link between two nodes is established, the data transfer rate 

depends only on the receiving buffer size. Typically, a SpaceWire node has a buffer 

able of storing 7 characters. Before a data transfer, the sender checks whether the 

receiver‟s buffer is full and data transfer will not occur until the receiver sends an 

authorisation to transmit to the source node.    

 
 

 

Figure 1: Integration of SpaceWire with the IEEE802.11 standard in a SoC design 

 

In the proposed design, the bridge must keep the SpaceWire router synchronised with 

the WiFi transceiver. Since the data rate of the OFDM-based IEEE 802.11 nodes is set 

at 6 Mbps and the bandwidth is 20 MHz, for ease of implementation, the SpaceWire 

router is also limited to 20 MHz. The IEEE 802.11 wireless transceiver in Figure 1 is 

implemented as a hardware accelerator in VHDL supporting the highest data rate. Its 

MAC layer contains functions such as „byte by byte‟ processing in both receive and 

transmit directions, cyclic redundancy check (CRC) generation for error detection 

purposes, signals to indicate successful transmissions and reception. It was observed 

that when the data rate is set to 6 Mbps, if a frame is received by the transceiver, the 

MAC layer forwards the bytes to the bridge at an interval of 350 ns and the 

SpaceWire destination router‟s buffer is never full. Even at higher data rates, the 

MAC would be forwarding data at the same interval which suggests that the bridge is 

able to efficiently transfer data between the router and a wireless transceiver operating 

at the highest speed for the IEEE 802.11a, g, and n standards.   
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3.2 Data Encapsulation 

Data coming from the SpaceWire router are presented to the bridge in groups of 9 

bits, in which the MSB represents the control bit, a „0‟ is used for data characters and 

a „1‟ is used for end of packet (EOP) and error end of packet (EEP). In order to ensure 

SpaceWire packets size are within the maximum 2312 bytes packet size supported by 

IEEE 802.11, a packet size is set in the SpaceWire network. As the wireless 

transceiver‟s MAC layer processes on a byte-by-byte to perform CRC, the SpaceWire 

character‟s control bit is stripped off in order to comply with the 8-bits input of the 

MAC layer.  The bridge placed at the receiver re-inserts the control bit and the end of 

packet marker. And when the MAC layer detects an error in the packet by CRC, the 

MAC layer informs the bridge, which in turns sends error end of packets (EEP) 

characters to the SpaceWire router. 

3.3. Remote Memory Access 

 

The latency involved in establishing a link between WiFi nodes and the use of the 

transceiver by software applications can lead to a bottleneck in the SpaceWire 

network. Therefore a mechanism for data storage while the router is waiting for its 

turn is required. The Remote Memory Access Protocol (RMAP) is proposed to allow 

SpaceWire nodes to access memory directly [6]. This protocol specifies 

acknowledged/non-acknowledged and verified/non-verified implementation methods 

for read and write operations. RMAP is an application layer protocol, in which CRC 

is performed at both the transmitter and receiver to ensure that data is written error-

free in the memory. 

 

Functions such as CRC checking and memory access via the DMA provide the WiFi 

transceiver with features that present similarities to RMAP. In IEEE802.11 networks 

an Acknowledgement (ACK) packet is sent to the transmitting node when the 

destination node receives an error-free. If an ACK is not received within a duration 

specified by the transceiver‟s acknowledgement time, the transmitting node will 

assume that an error or collision occurred.    

 

The long propagation delay in space is a major cause for decreased throughput. This 

would be further exacerbated by having to exchange a packet between spacecraft to 

ensure the receiving router is running and, once the SpaceWire is deemed connected, 

data transfer can be initiated. This may not be an advantageous flow control process, 

as the latency involved in WiFi link connections would be in the order of hundreds 

time higher in comparison to the latency of SpaceWire networks. Also, a transmitting 

SpaceWire node can send erroneous data in case of transient or intermittent faults [7], 

which would result in an inefficient use of the ISL. In the transmission of SpaceWire 

packets via the ISL, a link is instead assumed to be connected when a router is ready 

to send data to another router via the IEEE 802.11 wireless transceiver. This approach 

presents some distinctive advantages where even if the data originated from the 

SpaceWire network is error-free, they are still susceptible to the effect of the wireless 

communications channel effects. The transmission of a WiFi packet of 1500 bytes has 

a duration of 2 milliseconds and if during that period the router is still disconnected, 

the link can be considered to be down.  The CRC performed by the WiFi MAC layer 

is able to detect failures due to channel impairment as well as errors in SpaceWire 

packets. Thus when the source node receives an Ack, channel effects are mitigated 

and the SpaceWire packet is error-free. 
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The bridge transfers data from SpaceWire nodes to the off-chip memory via the 

DMA. When an error is detected, the MAC layer informs the bridge, which in turns 

appends an EEP to the SpaceWire packets. As opposed to RMAP, the CRC checking 

is done at a lower level than the application layer, this in turn reduces the latency and 

the complexity involved in implementing direct memory access into memory-mapped 

SpaceWire nodes. The DMA is designed with the flexibility of allowing the off-chip 

memory access to be either hard-coded or set in a C program. 

In essence, the bridge is capable of spoofing the end to end SpaceWire link 

connections. The resulting drawback is a drop in throughput in instances where a 

router is not connected.  

4. CONCLUSIONS 

 

This paper outlines a novel bridge design to connect SpaceWire routers with an 

IEEE802.11 transceiver. The similarities between the two standards are exploited and 

the design of a bridge capable of converting from the one standard format to the other 

is presented. To the best of the authors‟ knowledge a bridge design permitting the 

translation of SpaceWire packets into WiFi packets has not been previously proposed. 

The bridge is also able to control information flow and has a mechanism to provide 

memory access to SpaceWire routers. The bridge is incorporated into a high-

performance SoC, which provides a communication platform enabling spacecraft with 

SpaceWire networks to communicate via inter-satellite links based on the IEEE 

802.11 wireless network standard.   
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ABSTRACT 

SpaceWire is an onboard data-handling network for spacecraft which connects 

together instruments, mass-memory, processors and telemetry sub-systems. It offers 

high-speed, low power, simplicity, low cost, and architectural flexibility. The growing 

heritage, available technology and capability of SpaceWire make it an ideal data-

handling network for many future missions.  

Since the SpaceWire standard was published in January 2003, it has been adopted by 

ESA, NASA, JAXA and RosCosmos for many missions and is being widely used for 

commercial and other spacecraft. High-profile missions using SpaceWire include: 

Bepi-Colombo, James Webb Space Telescope, ExoMars, Gaia, Astro-H, GOES-R, 

Lunar Reconnaissance Orbiter, Swift, PnPSat, and TacSat. 

This paper provides an overview of some of the missions using SpaceWire. A 

summary of each mission is presented, its current status indicated, and the way in 

which SpaceWire is being used is described.  

1. The Missions 

1.1 Swift 

NASA’s Swift satellite is a multi-wavelength observatory 

which has been observing gamma-ray bursts since 2004 [1]. 

Planned to stay in low-Earth orbit for seven years, Swift has 

already exceeded its goal of observing 200 bursts, already 

having recorded over 400. SpaceWire is used to transfer 

information between the detectors and instrument readout 

electronics, and the instrument command and data handling 

unit. 
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1.2 Lunar Reconnaissance Orbiter
 

NASA’s Lunar Reconnaissance Orbiter (LRO) was launched 

with the L-CROSS mission and has provided extensive high 

resolution data about the moon [2]. LRO is looking for 

resources and potential landing sites, and characterising the 

radiation environment. It also acted as a data relay for L-

CROSS. Launched in late 2009, LRO is to remain in low 

polar orbit of the Moon for a year. LRO uses SpaceWire to connect its cameras, 

instruments, and communications, to the Command and Data Handling Computer.  

1.3 Lunar Crater Observation and Sensing Satellite
 

The Lunar Crater Observation (L-CROSS) was launched 

together with the Lunar Reconnaissance Orbiter in June 2009 

[3]. L-CROSS completed its mission four months later, 

successfully discovering the existence of water at the Moon’s 

South Pole. L-CROSS used SpaceWire in a very similar way 

to LRO [4]. 

1.4 TacSat-4
 

TacSat-4 is the fourth edition of the U.S. Military’s tactical 

satellite series [5]. As with others in the series, TacSat-4 has real-

time data requirements to provide military commanders with data. 

SpaceWire has been used as part of the payload-bus interface. It 

has been completed and is due to launch in August 2010. 

1.5 Gaia
 

Gaia is a star mapping mission which aims to measure around 

a billion stars in and beyond our Galaxy, focusing on their 

positions, motions, and other physical characteristics [6]. Gaia 

is currently in the implementation phase and is due to launch 

in 2012, when it will travel to L2 and remain there until 2020. 

Gaia is using SpaceWire to transfer data from the optical 

terminal to the video processing units, the payload data 

handling unit, and the central distribution and monitoring unit. 

1.6 ASTRO-H
 

ASTRO-H is an X-ray observation satellite designed by 

JAXA [7]. It has six planned instruments, hard and soft X-

ray telescopes and imagers, a soft X-ray spectrometer, and 

a soft gamma-ray detector. ASTRO-H is currently in the 

integration and test phases, and is due to launch towards 

the end of 2013, after which it is planned to stay in 

nominal operation into 2016. SpaceWire is being used as 

the primary data-handling system on the mission. 
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1.7 The James Webb Space Telescope 

The James Webb Space Telescope (JWST) is an infrared 

observatory which is planned for launch in 2014 with an 

anticipated life of five years [8]. This ambitious 

NASA/ESA/CSA joint project aims to study deep into the 

past of our Universe by searching for distant traces of light. 

SpaceWire is being used extensively within the JWST, 

acting as the main data-handling bus. 

1.8 BepiColombo Mercury Planetary Orbiter
 

ESA’s Mercury Planetary Orbiter (MPO) will examine the 

surface and internal structure of Mercury [9]. MPO will be 

launched in 2014 together with the JAXA MMO as part of 

the combined BepiColombo mission. After six years it will 

arrive at Mercury to begin its year long nominal mission, 

with the option of a one year extension. SpaceWire is being 

used to transfer data from the payloads to the data processing unit. 

1.9 BepiColombo Mercury Magnetospheric Orbiter 

JAXA’s Mercury Magnetospheric Orbiter (MMO) will look closely 

at Mercury’s Magnetosphere [10]. MMO will separate from the 

BepiColombo mission when it reaches Mercury. MMO uses 

SpaceWire to connect the instruments to both data processing units 

and then the spacecraft system.  

1.10 Magnetospheric Multiscale Mission 

The Magnetospheric Multiscale mission (MMS) aims to study the 

microphysics of magnetic reconnection, energy particle 

acceleration, and turbulence [11]. NASA’s mission, which orbits 

the Earth for around two and a half years, is due to launch late in 

2014. SpaceWire is used as the primary data interface between the 

Payload and the Spacecraft. 

1.11 GOES-R 

GOES-R is a geostationary environmental monitoring satellite 

which will replace the GOES-N, -O and -P series of satellites 

[12]. This joint NASA and NOAA mission contains six different 

instruments and will continue to provide the same service as 

previous GOES satellites. Due for launch in 2015, it will begin 

service in 2016 as GOES 14 retires, and has been designed to last 

to 2025. SpaceWire is used to transmit all sensor, telemetry, 

ancillary, command data, and time codes between the instruments and the spacecraft 

[13]. 
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1.12 ExoMars 

The joint ExoMars mission between ESA and NASA will provide 

further biological and environmental information about Mars, 

paving the way for robotic missions and human exploration [14]. 

The orbiter and the descent landing demonstrator are due to be 

launched in 2016, with the two rovers following in 2018. The 

rovers will use SpaceWire to connect the various cameras to the 

data-handling and processing system.  

1.13 PnPSat-1 

U.S.A.’s Air Force Research Laboratory’s Plug-and-Play Satellite 

was designed to be the first satellite to demonstrate the ability of 

plug-and-play assembly of spacecraft [15]. It can reduce the 

integration time of satellites by using open standards and a 

simplified assembly process. PnPSat-1 features a SpaceWire Router 

to provide high performance interconnectivity between twelve 

endpoint ports, to which various equipment can be connected. It is 

currently awaiting a launch date. 
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ABSTRACT 
 

The GOES-R program selected SpaceWire as the best solution to satisfy the desire for simple 

and flexible instrument to spacecraft command and telemetry communications.  Data 

generated by GOES-R instruments is critical for meteorological forecasting, public safety, 

space weather, and other key applications.  In addition, GOES-R instrument data is provided 

to ground stations on a 24/7 basis.  GOES-R requires data errors be detected and corrected 

from origin to final destination.  This paper describes GOES-R developed strategy to satisfy 

this requirement. 

 

1. INTRODUCTION 
 

The Geostationary Operational Environmental Satellite-R Series (GOES-R) program is a key 

element of the National Oceanic and Atmospheric Administration's (NOAA) operations. As 

such, the GOES-R and follow on series of satellites will be comprised of improved spacecraft 

and instrument technologies, which will result in more timely and accurate weather forecasts, 

and improve support for the detection and observations of meteorological phenomena that 

directly affect public safety, protection of property, and ultimately, economic health and 

development. The first launch of the GOES-R series satellite is scheduled for 2015.  The 

GOES-R spacecraft uses European Cooperation for Space Standardization (ECSS) 

SpaceWire [1] for the transfer of sensor, telemetry, ancillary, command, time code, and time 

synchronization information between instruments and the spacecraft. 
 

2.  RELIABLE DATA DELIVERY PROTOCOL 

 

GOES-R project has developed a Reliable Data Delivery Protocol (GRDDP) that is based on 

SpaceWire capabilities for link connection and re-connection, error detection, virtual 

channels and routing.  This protocol has been presented to and accepted by the SpaceWire 

Working Group [2] and assigned a Protocol ID (PID) 238.  GRDDP also known as PID 238 

does not attempt to duplicate or improve on the considerable capabilities provided by 

SpaceWire.  This protocol builds on top of SpaceWire  the ability to recover lost packets, 

reorder packets, and to ensure to higher level processes that packets are as error free as 

possible.  

  

GOES-R requirements for PID 238 are to utilize SpaceWire capabilities to provide a packet 

delivery protocol that is able to detect and recover lost packets.  The protocol is also required 

to be flexible so that it can be adapted as needed to different host data throughput 

requirements and resources.  PID 238 intentionally does not specify an implementation.  It 
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defines a set of capabilities, but does not require that all capabilities be implemented for all 

applications. 

 

PID 238 is based on the concept of "Virtual Channels" similar to the virtual channels 

identified in the SpaceWire specification.  Any number of virtual channels can coexist on a 

single SpaceWire link.  In PID 238, all channels are completely independent.  PID 238 

defines virtual channels as a pair of Transport End Points (TEPs).   Each TEP is identified by 

a SpaceWire Logical Address (SLA) and interfaces to a SpaceWire link to send and receive 

PID 238 packets.  Each PID 238 virtual channel transmits data packets in only one direction, 

thus each channel consists of one Transmit TEP and one Receive TEP.  PID 238 protocol is 

completely specified in terms of the behavior of a Transmit TEP and a Receive TEP.  A host 

will have only one TEP for each virtual channel that it supports.  Note that a Transmit TEP 

sends data packets, but also receives acknowledge packets from the remote Receive TEP.  A 

Receive TEP receives data packets, but also transmits acknowledge packets. 

 

PID 238 specifies a packet format that is consistent with the standard SpaceWire packet.  

Specifically a packet terminated with an End of Packet (EOP) or Error End of Packet (EEP) 

character.  However, where the SpaceWire standard allows a path address of zero or more 

bytes, PID 238 requires that exactly one destination SLA be delivered to PID 238 logic at the 

destination.  That destination SLA identifies the virtual channel that is to receive the PID 238 

packet.  PID 238 does not dictate packet routing through a SpaceWire network be it point-to-

point or composed of multiple routers.  Packet routing is handled by the SpaceWire layer.  

PID 238 does not try to improve on SpaceWire packet routing.  The one-byte destination 

SLA is sufficient to get a SpaceWire packet to its destination through a variety of network 

configurations. 

 
 

 

Figure 1. PID 238 Packet Routing 

 

Figure 1 illustrates PID 238 perspective for packet routing.  Each of the several virtual 

channels that may reside on a host has associated with it the destination SLA for that 

channel's remote TEP.  For PID 238, there is no "path" to the remote TEP, only a destination 

SLA.  PID 238 does not have, and does not require, knowledge of how a packet gets to its 

destination.  This keeps PID 238 simple, and allows any implementation using this protocol 
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to remain independent of possible SpaceWire network changes, and unaffected if a remote 

TEP for a channel is re-configured to reside on a different host.  Figure 2 shows PID 238 

format and details can be found in the protocol's document [3]. 
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Figure 2. PID 238 Packet Format Inside a SpaceWire Packet 

 

Key features of PID 238 are: 

 

 Defines 4 kinds of packets 

 Data Packets have Sequence Numbers from 0 to 255 

 ACK Sequence Numbers must match the source Data Packet 

 The Urgent Message Sequence Number is always 0  

 The Reset Packet Sequence Number is always 0  

 

3.  PID 238 OPERATION OVER SPACEWIRE 

 

The TEP for each channel is in one of three possible states Closed, Enabled, or Open.  By 

default, all channels are in the Closed state until the host sets the channel to Enabled.  A 

channel that is in the Closed state will not transmit any packets, and will not acknowledge or 

process any packets received.  When in the Enabled state, a transmit TEP will send only 

Reset packets to the remote receive TEP.  When an Enabled receive TEP gets the Reset 

Packet, it changes to the Open state and then sends an ACK for the reset.  When the transmit 

TEP receives the ACK it changes to the Open state.  The Reset and ACK packets are what 

lets both ends of the channel know that the other end is "open", or active.  The reset also 

serves to synchronize the "next" Sequence Number expected for both ends of the channel.  

Note that only the transmit side can open a channel.  An enabled receive TEP can only sit 

back and wait for the transmitter to become active (or enabled) and send the Reset Packet.  

Until the transmitter is ready to start sending Data Packets there is no reason for the receiver 

to do anything. 

 

PID 238 provides several capabilities that work together to provide the reliable 

data delivery that is required for GOES-R. 
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PID 238: 

 

 Detects lost packets by using positive acknowledge for each packet transmitted. 

 Recovers lost packets using an ACK timeout and retransmit. 

 Re-orders received packets and removes duplicates using sequence numbers. 

 Maximizes data packet throughput using a sliding window range of sequence numbers 

that allows a transmitter to continue sending packets while waiting for 

acknowledgements 

 

Each of these capabilities can be independently adapted for each channel so that PID 238 can 

be adapted to the data throughput and reliability requirements for each data stream. 

 

PID 238 uses a positive acknowledge for each packet transmitted.  If an ACK is not received 

within a timeout interval, that packet is retransmitted.  After a maximum number of retries 

have been exhausted for a packet, the transmitter will declare that virtual channel (and only 

that  channel) closed.  The requirement for the receiver to acknowledge each packet allows 

the transmitter to detect lost packets if an ACK is not received.  On the receiver end, a packet 

is acknowledged if it has a valid PID 238 header and Cyclic Redundancy Check (CRC) 

character. 

 

In the case where data packets represent a "current" value that changes at a high rate.  In this 

case there is no point in re-transmitting an un-acknowledged old packet when a new packet is 

available.  PID 238 defines an "Urgent Message" packet type that does not need to be 

acknowledged, and is delivered to the host at a higher priority than the normal data packets.  

In order to keep things simple, the Urgent Messages do not require a separate channel.  

Urgent Messages can be intermixed with normal data packets on a single channel. 

 

In order to maximize throughput, PID 238 defines a moving window range of sequence 

numbers that allows the transmitter to transmit ahead while waiting for ACKs.  The size of 

the window range limits the number of packets that can be transmitted by a Transmit TEP 

while waiting for an ACK.  At the Receive TEP, the window is used to eliminate duplicate 

packets, and to ensure packets are delivered in correct sequence to the host. 

 

A channel that is required to transmit high rate data would use a large window so that a large 

number of data packets can be sent ahead of receipt of the ACKs.  If an ACK is not received 

within a timeout interval, the transmit TEP will retransmit only that packet.  The Receive 

TEP implements the same size window to order the packets delivered to the host and will 

deliver the retransmitted packet in correct sequence.  The moving window, and the associated 

memory buffers required for retransmission of old packets and for re-ordering received 

packets does require some additional logic and memory resources.  The amount of memory 

required to buffer moving window data packets depends on the maximum packet size and the 

window size.   

 

In a case where a PID 238 channel does not require a high data rate, the window size can be 

set to one.  A window size of one provides a synchronous transfer where the transmitter waits 

for each packet to be acknowledged before sending another.  Finally the simplest PID 238 

implementation is used when data is updating at some known rate and fresh data will quickly 

replace lost or stale data.   This is the Urgent Message service.  Urgent Message does not 

require moving window processing or an ACK packet.  It is straight forward fire-and-forget. 
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PID 238 Mode Usage 

Full Mode 

Window Size >1 

 

High Data Rate 

Full Mode 

Window Size = 1 

 

Low Data Rate 

Urgent Message 

Window Size = 0 

 

Low Latency 

 

Table 1. PID 238 Usage 

 

In summary, PID 238 specifies the behavior of Transmit and Receive TEPs.  Transmit TEPs 

will transmit only Data and Reset packets.  A transmit TEP will never receive a data packet 

or a reset, and will never transmit an ACK.  A Receive TEP will transmit only ACKs, and 

will receive only data packets or resets.  A Receive TEP will never transmit a Data or Reset 

packet.  The rules for when a Transmit TEP sends Data or Reset packets and a Receive TEP 

sends an ACK are not complicated.  Much of PID 238 flexibility for adapting to different 

instrument requirements has to do with the number of transmit or receive channels, whether 

Urgent Messages are used, and the window size selected.  An instrument with very low rate 

data requirements might elect to implement one transmit TEP and one receive TEP (only one 

channel in each direction), and to use a window size of one for both the transmit and receive 

channels.  In this case, PID 238 would provide synchronous data transfers where each packet 

transmitted must be acknowledged before another can be sent.  With a window size of one, 

the need for transmit or receive buffers is minimal, and there is no need to implement the 

logic to re-order packets.  At a minimum, PID 238 provides multiple virtual channels that can 

be independently routed via the SpaceWire network, and improved error detection through 

the CRC. 

 

4.  SPACEWIRE AND PID 238 TEST SYSTEM 

 

GOES-R project has maintained a SpaceWire test lab [4], initially to validate PID 238, to 

evaluate varying the parameters that might affect performance, and for validating different 

proposed options and configurations that could be used on the GOES-R spacecraft.  The  

GOES-R test system has 2 SpaceWire implementations.  The first is a GOES-R test card 

utilizing the British Aerospace (BAE) SpaceWire Application Specific Integrated Circuit 

(ASIC).  And the other is a Xilinx Field Programmable Gate Array (FPGA) commercial off-

the-shelf card.  The FPGA card is programmed with a modified version of the Goddard 

SpaceWire core that removed the SpaceWire worm hole router.  Additionally, the FPGA core 

provides additional diagnostic and error injection capabilities.  These test cards reside in off-

the-shelf Windows workstations and the initial test system is shown in Figure 3. 
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Figure 3. PID 238 Over SpaceWire Original Test System 

 

In all cases, where the BAE SpaceWire ASIC is used to simulate an instrument or the 

Command and Data Handling (C&DH) system, the same Embedded Microcontroller (EMC) 

code, including tunable parameters, is used for each test article.  PID 238 software 

implementation is approximately 600 lines of code.  Depending on the packet rate, Central 

Processing Unit (CPU) utilization is in the single digit percentage range on the EMC clocked 

at 33Mhz.  The EMC is capable of operating at clock rates up to 80Mhz. 

 

The probability of an error occurring during transmission of a packet depends on the size of 

the packet.  The ability to recover a lost packet by retransmitting also depends on the size of 

the packet.  Small packets require retransmission of only a small packet making it easier to 

insert into a data stream.  Where large packets have a larger impact and may require more 

bandwidth margin.  GOES-R testing has successfully recovered lost packets, of various sizes, 

when the normal data stream uses over 90% of the available bandwidth.   

 

5.  NEXT STEPS 

 

Of the 5 GOES-R instruments, 2 have implemented PID 238 in FPGAs, and the other three 

have implemented the protocol in software on the embedded microcontroller in the BAE 

SpaceWire ASIC.  Each of the GOES-R instruments are implementing the SpaceWire and 

PID 238 interface as a point-to-point architecture.  Modeling the proposed spacecraft data 

system has shown no changes are required in any instrument implementation including the 

addition of several SpaceWire routers. 
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Figure 4. Simplified Spacecraft Design with Multiple SpaceWire Routers 

 

The most simple instrument with very small data throughput requirements and minimal 

processor resources,  the largest instrument with the highest data throughput requirements, 

and the spacecraft C&DH that interfaces to them all have implemented PID 238 to the same 

specification.  All of the instruments as well as the spacecraft recognize a common method 

for detecting and recovering data link errors and lost packets.  GOES-R has several years 

experience exercising SpaceWire and PID 238 in a variety of configurations.  In all cases 

SpaceWire and PID 238 have been found to be robust, efficient, and flexible.  PID 238 over 

SpaceWire is documented, tested, and available for use in space data system applications. 
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6.  CONCLUSION 

 

PID 238 was developed to satisfy data system requirements for all GOES-R instruments. The 

instruments have a wide range of electronics implementations from simple to complex, and a 

wide range of data rates.  SpaceWire transmit clock rates operate at either 10MHz or 

132MHz.  GOES-R instrument data rates ranging from 50kb to 66MHz are easily managed 

by the combination of PID 238 over SpaceWire.  Many parameters of PID 238 can be tuned 

to match the reliability requirements and a node’s ability to support the required complexity. 

PID 238 has proven able to adapt to those capabilities and data rates due to its inherent 

flexibility.  PID 238 is documented and extensively tested.  It is available and ready to be 

applied to SpaceWire applications. 
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ABSTRACT 

ASTRO-H is a very large scale and complicated spacecraft as a scientific mission. In 

order to realize the project with limited resources, SpaceWire is used as the 

information network base, and many elements such as the network architecture, 

standard nodes and ground support equipments have been designed. The design is 

adaptive for not only ASTRO-H but other missions: in JAXA, the small satellites 

project will use the common design architecture. 

1 INTRODUCTION 

ASTRO-H[1] is the 6th Japanese X-ray astronomy satellite, which is scheduled to be 

launched in 2014. The requirements for the satellite controlling units, such as of 
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system management, telemetry-and-command handling and attitude controlling, are 

more complicated than for past scientific satellites. In addition to this, the satellite 

carries 4 different kinds of scientific payloads, X-ray micro calorimeter (SXS), X-ray 

CCD camera (SXI), hard X-ray imaging spectrometer (HXI) and soft gamma-ray 

detector (SGD), each of which has different type of sensor and on-board data 

processing scheme from others. They make the satellite structure complex and force 

multiple companies to be deeply involved in the interface coordination, which usually 

introduces long negotiation, development and integration phases and lead the project 

to a cost-consuming way. 

SpW[2] motivated us to define new system architecture to solve these problems, 

which is applicable not only to ASTRO-H but also to other projects. We thus build up 

a new standard that defines network protocol, router, the standard computer 

architecture and the standard I/O module, which are constructed on the SpW standards 

and can be implemented by multiple companies. In addition to them, we also defined 

a handling scheme of the CCSDS Space Packet on the network.  In parallel to the 

standard definition process, we organized a SpW user community with other JAXA 

satellite projects, which works as the technical forum among the standard developers, 

component developers and users. 

2 ON-BOARD ARCHITECTURE 

The ASTRO-H information-exchange framework is wholly SpW base. This consists 

of the network, the data format and each component (i.e., SpW node).  

~12 m 

Figure 1: A CG image (left) and a schematic frame drawing (right) of the ASTRO-H satellite. 

The SpW network covers not only the main body but also the extendable optical bench (EOB) 

plate and the fixed optical bench (FOB) top plate. 

HXI 

SXS SXI 

Star trackers 
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2.1 REQUIREMENTS 

The ASTRO-H observatory is expected to generate about 12Gb of data par day, which 

corresponds to about 140 kbps, which is not very large value for a modern data 

transfer line. This is, however, a result of on-board data reduction process, and the 

original data generation rate is 10-100 times larger than this. In order to handle the 

original data without any loss, the network must have a well-designed topology. 

2.2 NETWORK 

The SpW network covers whole the satellite, whose length is about 14 m on orbit and 

the core part shapes octagonal column inside which most of the components are 

attached. On the base panel inside the column, SXS, SXI and the fixed optical bench 

that supports the X-ray mirrors, the star trackers and the optical alignment system are 

settled. The extendable optical bench is attached at the backside of the base panel and 

supports HXIs. SGDs are placed at the outside of two panels. Figure 1 shows a 

schematic drawing of the satellite structure.  

2.2.1 TOPOLOGY AND DIRECTION 

The ASTRO-H SpW network consists of two physically-independent subnets: one is 

the DH (data handling) network that is controlled by the satellite management unit 

(SMU) and includes data recorders (DRs) and telecommunication components, and 

the other is the AC (attitude control) network that is controlled by the attitude and 

orbit control processor (AOCP). AOCP is also connected to the DH network, but no 

SpW packet, even TI packet, is forwarded between two networks. All the AC network 

components other than AOCP are sensors or actuators, and all the traffic in the 

Figure 2: A schematic diagram of the physical network topology. There are two independent star 

topology networks. 
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network is initiated by AOCP. Figure 2 shows schematic diagram of physical network 

topology. 

The components of each network are basically connected to the SpW routers that are 

based on the crossbar switch technology and form the physical networks of star 

topology: multiple SpW communication thus can be held simultaneously with no 

packet collision. All the SpW components are connected to two or more different 

SpW components or routers, and single failure of any connection can be substituted 

by an alternative path. The link speed from SpW routers and SMU is 25 MHz. 

The logical structure of the ASTRO-H SpW network is, on the other hand, tree 

topology starting from the telemetry command interface module (TCIM), and all the 

SpW transaction are initiated from the root-side of the network. TCIM communicates 

with SMU, and SMU sends out all the commands to other components in normal 

operation. Most of the communication except for diagnostic or initialization ones are 

held between parent and child nodes and initiated from the parent: other kind of 

communication is physically possible, but forbidden except for ones between SMU 

and TCIM or DR and other components. The reason of the latter exception is that 

most of the telemetry data generated by payload instruments are not edited by SMU 

and can be transferred to the ground stations directly. Figure 3 shows schematic 

diagram of logical network topology. 

All the traffic between SMU and other components in the DH network is thus initiated 

by SMU. The traffic is categorized into command and telemetry in the application 

layer: the former contents flow from SMU to other components, and it is natural that 

SMU initiate the transaction. The latter are, on the other hand, generated from other 

components in most cases. In order to transfer such contents, we chose the 

architecture that the destination side (SMU or DR) collects each component’s output 

with periodic polling by SMU.  

Figure 3: A schematic diagram of the logical topology of the DH network. The network has tree 

topology, and the communication is basically held between a parent and a child in normal 

operation. 
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2.2.2 TIME CODE 

The TI packet of the DH network is generated by SMU. SMU receives the reference 

clock and time information from a GPS receiver via an exclusive line and SpW, 

respectively. The TI packet frequency is 64 Hz. 

2.3 PROTOCOLS 

All the SpW communication inside ASTRO-H uses RMAP[3]. With this protocol, all 

the components can have network-transparent accessibility, which is quite useful for 

diagnostic and initialization not only in R&D phase but also even on orbit. The 

contents carried by the RMAP access is classified into two: Space Packets[4] and raw 

data. 

2.3.1 CCSDS ON RMAP 

Commands to all the components and telemetry from major instruments such as 

scientific payloads are transferred as Space Packets on RMAP. All the command 

packets are sent out from SMU, and the telemetry packets are generated by multiple 

components. The latter ones are sent out to SMU or DR, and transferred to the ground 

stations at the end. 

Each command packet is transferred by independent RMAP transaction. Multiple 

telemetry packets, on the other hand, can be transferred by one RMAP transaction. 

2.3.2 PIM ON SPW 

In case of non-intelligent components that cannot generate Space Packets, the 

telemetry data are generated as raw binary data on the RMAP memory space. The 

memory map is based on that of the peripheral interface module (PIM) that has been 

used for previous Japanese scientific satellites[5]. The data are periodically read and 

assembled as Space Packets by SMU.  

2.4 COMPONENTS 

As described in Section 1, the main motivation of introducing SpW to the ASTRO-H 

project is to make the satellite system as simple as possible. We accordingly 

developed several kinds of SpW devices that can handle not only the physical layer 

but also up to RMAP level. The largest component is SpaceCube, which is a computer 

architecture that can handle RMAP/SpW and work as a stand alone machine. Another 

group consists of embedded devices that bridge between components’ internal bus and 

RMAP memory space: they cannot work without other devices such as memories or 

sensors, but make old architecture payloads as SpW components. 

In all cases, the signal ground of all the SpW devices in all the components are 

connected to the satellite body explicitly because the LVDS devices, which are used 

in the physical layer of SpW, generally have low tolerance to over voltage on the I/O 

pins and it is essential to align the signal ground levels among all the SpW 

components.  

2.4.1 SPACECUBE 

SpaceCube is a computer architecture for spacecraft information system, and has 

following features: (1) open architecture based on T-Engine, (2) SpW connection, (3) 
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source-code level compatibility in the application layer between different 

implementation and (4) small, low mass, low power consumption and low cost by 

introducing recent results from commercial products. The original SpaceCube, which 

is sometimes called as SpaceCube1, is developed by Shimafuji and JAXA. The 

ASTRO-H on-board computers connected to the SpW network are its derivatives or 

successors, which are implemented by NEC and MHI independently.  

2.4.2 EMBEDDED RMAP DEVICES 

For small components such as simple sensors or actuators, a CPU-based system such 

as SpaceCube is too complicated in most cases. In order to connect such components 

to the SpW network, we developed IPs that can be implemented in an FPGA and 

ASICs. They can handle not only SpW connection and network but also RMAP, and 

are embedded in many components, such as the power control unit and SpW I/O 

boards used for the scientific payloads. They are also implemented by multiple 

companies independently, as the SpaceCube computers do. 

3 SUPPORTS FOR DEVELOPMENT 

As SpW is on the cutting edge of the spacecraft information technology, we are taking 

both technical and social approach to make use of it. Both are depending to each other 

and difficult to be separated clearly, but we can pick up some prominent cases: the 

ground support equipments (GSE) supplied by the system integrator and the user 

community.  

3.1 GSE 

As the spacecraft information system is not only an aggregation of communication 

channels but a highly organized system managed by SMU, a GSE that act as the 

network manager is essential for the payload instrument development. For this 

purpose, the satellite integrator (NEC) and JAXA are preparing two kinds of SMU 

simulators. The minimum simulator is called “SMU Sim Light” and has abilities to 

send out Space Packet commands, collect raw binary data from target components and 

receive Space Packet telemetry data. The simulator consists of a commercial grade 

SpaceCube computer, the on-board software and a PC that works as the console. 

The full configuration simulator is called “SMU Sim”. This system contains whole the 

ground control system equivalent to that used for the real spacecraft control, and can 

emulate not only SMU but also the control system used in the integration test phase. 

The component developers thus can carry out interface tests in the development phase 

independently before the system integration test. 

3.2 COMMUNITY 

In order to develop SpW based system, we formed a SpW user group in Japanese 

space community where the members share the basic knowledge such as the startup 

procedure of the SpW system development and a reference implementation of SpW 

and RMAP software on SpaceCube. The member is not limited to JAXA and 

aerospace companies, and the group works as a gateway to commercial base SpW 

instruments and ground-based applications. 
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The ASTRO-H SpW components are designed as adaptive for other missions. In 

ISAS/JAXA, the small satellites project is running in parallel to ASTRO-H, and many 

of the DH and AC network components will be used in that. 

4 CONCLUSION 

We are developing the ASTRO-H satellite with using the SpW technology as the main 

information framework, and many elements such as the network architecture and the 

standard components are designed. They will also used for other Japanese future 

scientific space missions. 
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ABSTRACT 

Thales Alenia Space is implementing SpaceWire technology in most future space 

projects for observation missions. Today, three kinds of space applications are 

currently based on SpaceWire architectures for payload data handling, with low earth 

orbit observation satellites, planetary exploration carriers and geostationary 

observation satellites. 

All various missions are briefly described and compared for SpaceWire 

implementation, showing how the SpaceWire use and perimeter is increasing from 

interfaces standardization up to interfaces optimization by merging of mission and 

configuration command/control data for exceeding limits of today architectures : 

- the Sentinel-3 satellites for the provision of operational marine and land 

services, based on optical and microwave Earth observation payload,  

- the ExoMars mission for Entry, Descent and Landing Module (EDM) of a 

payload on the surface of Mars,  

- the MTG system will provide Europe’s National Meteorological Services for 

both meteorological and climate applications.  

1 INTRODUCTION 

Thales Alenia Space is implementing SpaceWire technology in most future space 

observation missions. Today, three kinds of space applications are based on 

SpaceWire architectures for payload data handling, with low earth orbit observation 

satellites, planetary exploration carriers and geostationary observation satellites. 

Main missions are briefly described and compared for SpaceWire implementation, 

listing the advantage and the criticality in implementing SpaceWire. The comparison 

on how the SpaceWire is used, shows that the SpaceWire perimeter is increasing from 
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interfaces standardization, through interfaces optimization by merging of mission and 

configuration command/control data up to allowing to exceed limits of today 

architectures.    

Since SpaceWire is now mature and suitable for space high speed communication, it 

is natural for Thales Alenia Space to implement it now in its first European LEO 

observation mission, i.e. GMES Sentinel-3. As a first SpW application at system level 

for Thales Alenia Space, the use of SpW links focus on high speed mission data 

distribution for which SpW bring advantages compared to previous solutions. 

Then thanks to the preliminary achievements with LEO satellite, the use of SpW 

might be extended for planetary exploration orbiter. This solution is presently under 

analysis. 

Finally the use of SpW for GEO observation satellite is obvious as for LEO ones, 

since such missions embed high speed instruments. Today, these missions are 

dedicated to operational meteorology. Furthermore, GEO meteorology requires 

continuous handling of high speed mission data flows without allowed outage for 

various payload modes based on multiple instrumen’s, for which routing capability 

and fast imaging configuration command/control is required : SpW technology is 

today offering these services thanks to the routing and full-duplex capabilities. 

 

2 LEO OBSERVATION MISSIONS WITH SPACEWIRE 

Thales Alenia Space is the prime contractor of the GMES Sentinel-1 and 3 programs. 

The four Sentinel-1 and 3 satellites embed several instruments which generate high 

rate data stream and since their development calendars fit with SpW technology 

maturity, it was the good targets for Thales Alenia Space to start SpW implementation 

at system level. 

As first SpW implementation on a complete satellite’s payload and since SpW is first 

suitable for high speed communication, Thales Alenia Space efforts focus on high 

speed mission data distribution from instruments to the mass memory for RF 

downlink.  

2.1 SENTINEL-3 MISSION 

In the frame of the Global 

Monitoring for Environment and 

Security program (GMES), the 

Sentinel-3 is a European polar 

orbit satellite system for the 

provision of operational marine 

and land services, based on optical 

and microwave Earth observation 

payload. 

The Sentinel-3 Data Handling 

Satellite cold 

face (-Y)

satellite flight 

direction (-X)

earth direction 

(+Z)

Satellite cold 

face (-Y)

satellite flight 

direction (-X)

earth direction 

(+Z)
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architecture design has been driven by a) minimized development risks, b) system at 

minimum cost, c) operational system over 20 years. 

This has led to design architecture as robust as possible using a single Satellite 

Management Unit SMU computer as the platform controller, a single Payload Data-

Handling Unit for mission data management,  and to reuse existing qualified heritage. 

The payload accommodates 6 

instruments, sources of mission 

data. The 3 high rate 

instruments provide mission 

data directly collected through 

the SpW network, while the low 

rate instruments are acquired by 

the central computer for 

distribution through the SpW 

network to the mass memory. 

The PDHU acquires and stores 

all mission data for latter 

multiplexing, formatting, 

encryption and encoding for 

download to the ground. 

2.2 SENTINEL-3 SPACEWIRE ARCHITECTURE 

The payload architecture is built-up over a SpW network for direct collection of high 

rate SLSTR, OLCI and SRAL instrument’s and indirect collection of low rate MWR, 

GNSS and DORIS instrument’s plus house-keeping data through the Mil-Std-1553 

bus by the SMU, all data being acquired from SpW links and managed by PDHU.  

 

The mission data budget is easily accommodated thanks to SpW performance. Each 

SpW link being dedicated to point-to-point communication without interaction on the 

other links (no routing), the frequency is set according to the need plus a significant 

margin. The PDHU is able to handle the 4 SpW sources at up to 100Mb/s. 

SENTINEL 3 Satellite main features 

Instruments Sea and Land Surface Temperature sensor (SLSTR) 

Ocean and Land Colour sensor (OLCI) 

Altimeter (SRAL) 

Microwave radiometer (MWR) 

GNSS receiver 

Doris receiver 

Observation data  103 Gbit/orbit- 300  Mbit/s PLTM downlink data 
flow 
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For a robust payload data management, redundancy is required. Full cross-strapping 

of all SpW links was abandoned for reducing harness mass, instrument’s complexity 

and increasing the reliability vs failure propagation. 

All mission data sources 

(OLCI, SLSTR, SRAL and 

SMU) provide data through 

two cold redundant interfaces 

and harnesses. The PDHU 

being critical as the central 

point of the mission data 

management, implements a 

full cross-strapping between 

nominal and redundant 

sources interfaces and its 

nominal and redundant 

sides. 

Specific efforts in design 

activities were spent to 

implement efficiently a full 

cross-strap redundancy 

within PDHU : suitable 

protections were 

implemented to prevent any 

risk of failure propagation 

from one interface to the 

others. 

The PDHU SpW interfaces 

are performed thanks to a specific FPGA, instrument’s ones are based on ESA Atmel 

SMCS-332 and SMU ones is implemented by an EPICA ASIC circuit developed by 

Thales Alenia Space. 

The SpW full duplex capability is not used neither for synchronization nor for 

command/control since there is no PDHU routing capability between instrument’s and 

SMU : 

- instrument’s synchronisation is ensured by basic OBT broadcast over Mil-Std-

1553 bus associated to the occurrence of a PPS pulse.  

- all command/control of the payload is performed through dedicated Mil-Std-

1553 communication bus. 

All mission data are PUS formatted at source level and transferred over SpW without 

additional transport protocol, i.e. one SpW cargo carrying one PUS packet : transport 

protocol is not needed for such point to point communication links. 

2.3 SENTINEL-3 SPACEWIRE BACKGROUND 

The previous similar payload architecture were based on unidirectional serial links as 

space LVDS interface or LNR (French acronym for fast digital line) which requires a 

SENTINEL Mission data budget 

Mission data source continuous data rate Link data rate 

OLCI 31 Mb/s 100Mb/s 

SRAL 14 Mb/s 50Mb/s 

SLSTR 5 Mb/s 50Mb/s 

MWR, GNSS, DORIS, HK 200Kb/s 10Mb/s 
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qualification process of commercial components. Thanks to standardized SpW links, 

design is simplified since development of source and destination sides can be 

developed in parallel with low constraints : different circuit may be implemented as 

SMSC-332 for instruments, FPGA for PDHU and EPICA ASIC for SMU. It also 

allows to tune data-rate without putting into question qualification. 

On other ends difficulties were encountered in implementing SpW for : 

- robust cross-strapping redundancy 

- harness  and connector bracket impact on performance 

- detector’s data acquisition vs noise immunity 

The two first critical points are also encountered for alternative LVDS or NLR design. 

The following preventive actions are performed : 

- concentrate redundancy cross-strapping at PDHU, with intensive design 

activities to implement suitable protection against failure propagation 

- plan advanced bread-boarding as part of virtual EM satellite test campaign for 

pre-validation of SpW communication  

The last point concerning detector noise is due to the asynchronism of the SpW which 

prevents to synchronize the data transfer outside the optical signal acquisition slot : to 

prevent such perturbation risk on detector signal quality, a synchronized acquisition 

through a parallel bus is more suitable for detector’s links. 

An other advantage of using 

standardized SpW is found in 

EGSE development which is 

easier and cheaper thanks to 

existing SpW building blocks 

for data acquisition, simulation 

and investigation. 

The SpW routing capability is 

replaced by data multiplexing 

when pick up from various 

large memory buffers before 

formatting, coding, encrypting 

for downlink to the ground. 

This missing routing capability 

prevents smooth transition for 

both payload synchronization and command/control allowed by SpW full-duplex, 

since SMU and instrument’s cannot communicate directly through the SpW network. 

3 INTER-PLANETARY EXPLORATION CARRIER WITH SPACEWIRE 

The inter-planetary missions can present an interesting target for SpW implementation 

due to the advantages of lower consumption w.r.t. Mil-Std-1553 bus, lower mass and 

flexibility in accommodating several instruments on a unified payload network for 

both mission data-handling and command/control.  
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Today the SpW implementation in inter-planetary missions is taking benefit of  

heritage from in-going developments, with a basic use as for sentinel missions.  

3.1 EXOMARS MISSION 

The ExoMars mission 

shall accomplish the 

technological objective 

with Entry, Descent and 

landing Module (EDM) of 

a payload on the surface of 

Mars, the scientific 

objective to support the 

search and localization of 

Methane sources on Mars 

and the data relay with Rover on Mars.  

The payload sources are the UHF source with the EDL for proximity links with 

martian rovers, and the 6 science instruments that remotely sense the Martian 

atmosphere and surface.  

3.2 EXOMARS SPACEWIRE ARCHITECTURE 

A SpaceWire network is candidate to acquire and multiplex data from these various 

instruments. The payload network accommodates 6 instruments and a UHF tranceiver 

as proximity data 

link with martian 

rovers for their 

command/control 

messages.  

Science instruments 

provide various data 

flows from 25Kb/s 

to 90Mb/s. The 

global science data 

volume is estimated 

to be lower than 

15Gb per day. Science data are stored into the PDHU Mass Memory. 

The payload network built around the PDHU ensures communication with 8 

functional nodes: 6 instruments, the UHF transceiver and the SMU. For consumption 

and mass constraints, the cold redundant pair of SpW links is foreseen with a full 

cross-strapping redundancy implemented in the PDHU. 

3.3 EXOMARS SPACEWIRE SPECIFITIES 

The SpW bring the great advantage to easily accommodate instrument’s with 

fluctuating data-rates.  
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Due to heritage from sentinel development, synchronization and data multiplexing are 

not foreseen using SpW time-codes and routing capability. A further improvement 

with routers could save mass and harness with a unified PL network for both 

synchronization, mission data and command/control. 

4 GEO OBSERVATION WITH SPACEWIRE 

Observation satellites from the geostationary orbit are characterized by implementing 

high rate instrument’s with continuous mission data transfer to the ground, thanks to 

the constant ground station visibility. They require real time system with high 

throughput without any risk of bottleneck since there is no on-board storage. 

These kind of missions are, up to now, dedicated to meteorological missions. Thales 

Alenia Space is prime contractor of meteosat satellites for more than 30 years, 

preparing now the third generation of meteosat satellites.  

4.1 MTG MISSION 

The MTG system will provide Europe’s 

National Meteorological Services, with  

improved imaging and new infrared 

sounding capabilities for both 

meteorological and climate applications. 

The MTG space segment is based on 6 

geostationary satellites carrying 

complementary payloads, built around a fast 

SpaceWire network for an unified mission 

and configuration data management, 

merging science and RF data, with more 

than 300Mbps continuous downlink. 

4.2 MTG SPACEWIRE ARCHITECTURE 

The MTG satellites accommodate respectively the FCI imager, LI imager and the 

DCP digital transponder for the imager S/C, and the IRS and UVN sounders for the 

sounder S/C, over a payload SpW network for mission data distribution and 

instrument’s configuration with a total high rate telemetry of respectively 295Mb/s 

and 557Mb/s after RS concatenated encoding and encryption.  

MTG Imager Mission data budget 

Mission  
data source 

continuous  
data rate 

Total flow 
coded encrypted 

FCI 64 Mb/s  

 

295 Mb/s 

LI 4 Mb/s 

DCP 44 Mb/s 

HK/INR < 1Mb/s 

MTG Sounder Mission data budget 

Mission  
data source 

continuous  
data rate 

Total flow 
coded encrypted 

IRS1 91 Mb/s  

 

557 Mb/s 

IRS2 93 Mb/s 

UVN 54 Mb/s 

HK/INR < 1Mb/s 

Overview of Implementing SpaceWire in Observation Satellites from Thales Alenia Space

459



The payload data network is built around a Data Distribution Unit DDU that 

implements SpW routers for 3 instruments (FCI, LI, DCP or IRS1, IRS2, UVN) 

communication and one SMU for INR auxiliary data collection and network 

management. The network supports full cross-strapping between each terminal 

(instrument’s and SMU) and DDU leading to a total of 16 terminal ports based on to 

independent nominal and redundant DDU SpW-10X routers.  
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The network architecture is identical for both imager and souder configurations. The 

network is running at 200Mb/s on all links providing large margins. The large margin 

vs data distribution and the asynchronous behaviour of the SpW link, allow to 

accommodate variable instrument’s data flow according to their operational modes. 

For example the UVN instrument provides 40Mb/s in normal mode or 125Mb/s in 

commissioning mode. 

The SpW time code distribution is not used for payload synchronization due to the 

instrument heritage : a classical OBT associated to a PPS pulse is broadcast through 

the payload Mil-Std-1553 command control bus. 
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Thanks to the implementation of SpW routers, the full-duplex capability of the SpW 

is used for command/control messages required to configure quickly instrument’s 

without outage : large configuration tables are loaded from SMU mass memory into 

the instrument’s through SpW links. i.e. 135Mb data transfert between 2 consecutive 

image acquisitions. 

All messages are formatted with ECSS Packet Utilization Standard and distributed 

over the SpW network with ECSS SpW CCSDS transfer protocol, using user field for 

identifying the virtual channel for the high telemetry destination. 
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4.3 MTG SPACEWIRE SPECIFITIES 

The MTG satellites will be the first space mission in Thales Alenia Space for 

implementing and using complete SpW network capability with a full cross-strapping 

redundancy with SpW-10X routers and full duplex used for command/control 

configuration messages with large tables. 

Thanks to SpW standardization of physical layer and transport protocols, the PL 

network architecture, development and validation is simplified with well defined 

interfaces between the 3 instrument’s and Payload Data Downlink contractors. 

Similar payload were studied for the japanese satellites Himawary 8 and 9, for which 

Thales Alenia Space proposed to use the SpW full duplex capability to implement an 

active motion compensation of an US imager : the platform provided gyroscopic data 

at 100Hz through the SpW network to the instrument, in order to compensate by the 

scan mechanism attitude error for a very accurate and stable imager pointing. 

5 CONCLUSION ON SPACEWIRE IMPLEMENTATIONS 

As shown above, with Thales Alenia Space missions using SpaceWire (more than 12 

satellites), the SpW is more and more implemented with increasing functional 

perimeter from mission data distribution up to configuration. 

As first outcomes, implementing SpW allows to reduce interface complexity and 

separate interface management and development between different contractors for 

each side of the communication. This advantage was not possible using high speed 

specific line as LNR which required qualification process and common procurement. 

Availability of qualified SpW tools allows to easily build EGSE and check functional 

behaviour. 

System design effort shall be also spent at beginning of the project to define suitable 

redundancy concept with adequate protection preventing failure propagation as part of 

general construction and design specification. 

The main encountered drawbacks are the procurement delays of SpW components and 

the lack of qualification tables or characterization  tools for actual performance with 

final harness configuration : this is also applicable with alternative fast links as LNR. 

The SpW is also analyzed in R&T and advance projects. In particular it was found 

interesting for IXO mission to cope with high rate data transfer over long distance. 

The low SpW consumption was also found attractive for new avionics sensors as far 

as its harness weight could be mitigated. 

In next future, the use of SpW could be extended for payload command/control 

bringing interface and harness optimization, as soon as the determinism and FDIR for 

command/control messages distribution is ensured either by an efficient protocol or 

by architecture design rules. Then when real time performance and reliability are 

granted,  it would also allows some interesting improvements in avionics area mainly 

for AOCS performance and extended operability : management of high throughput 

sensors and involvement of instrument’s in the AOCS control closed loop for accurate 

satellite pointing and active motion real time compensation.  
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ABSTRACT 
SciSys is leading an ongoing ESA study into the development of an embedded 
systems software architecture which provides the capability to partition multiple 
applications in a safe and secure manner.  This architecture targets future dual-use 
spacecraft shared by multiple payload developers and operators.  We consider the 
requirements placed on a SpaceWire onboard communications system by such an 
architecture in terms of spatial partitioning of data and temporal partitioning of shared 
resources such as communications links.  The resulting discussion elicits concrete 
requirements on both the hardware and software of the onboard SpaceWire elements. 

1 INTRODUCTION 
SciSys is leading an ongoing ESA study into the development of an embedded 
systems software architecture which provides the capability to partition multiple 
applications in a safe and secure manner. As a baseline reference architecture, the 
study considers a dual use spacecraft with a single onboard computer handling both 
platform and payload operations with the latter performed by separate partitioned 
applications. 

Such a securely partitioning architecture places a number of requirements on an 
onboard communications system in terms confidentiality and integrity of data 
transmitted on shared resources such as communications links.  As an increasingly 
popular communications technology, the applicability of SpaceWire to such a future 
system architecture is crucial, and the ability of a SpaceWire communications 
architecture to meet the requirements is the focus of this paper. 

Section 2 introduces the concept of Time and Space Partitioning (TSP) and its 
applications to onboard processing.  Whilst TSP has typically been applied for reasons 
of safety and ease of development and integration, we discuss the implications of 
applying TSP in an environment where security needs must also be met.  The 
following three sections elicit concrete requirements on both SpaceWire hardware and 
software.  In Section 3, a hardware-focussed analysis lists mechanisms by which 
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current SpaceWire hardware interfaces may be utilised by a securely partitioned 
computing platform, and presents key concepts for future consideration.  Link- and 
network-level partitioning in routers is considered in section 4, for example time-
scheduling, such as in SpaceWire-(R)T.  In Section 5, a complementary analysis 
discusses the role of software services, such as SOIS, in a securely partitioned system.  
The paper concludes by summarising the central role that SpaceWire can play in a 
securely partitioned spacecraft architecture. 

2 TIME AND SPACE PARTITIONING FOR SECURITY AND SAFETY 
The concept of TSP in software systems has been established for some time, and has 
seen successful application in a wide variety of domains, including avionics, 
automotive systems, enterprise servers and handheld mobile devices. 

2.1 TIME AND SPACE PARTITIONING 

TSP is a technique which permits the sharing of a computing platform between 
multiple independent applications. Spatial partitioning indicates the division of shared 
resources, such as memory, which may be utilised by multiple applications 
simultaneously. Spatial regions such as memory address ranges can be limited to 
exclusive access by one application, or shared access by multiple applications can be 
granted. Temporal partitioning indicates the division of shared resources, such as a 
simple processor, which cannot be utilised by multiple applications simultaneously.  
Such resources must be wholly ‘owned’ by a single application at any point in time, 
and are shared by multiplexing the access to the resource by applications in time. 

Through suitable enforcement of temporal and spatial partition boundaries, TSP 
provides an integrated environment in which applications cannot interfere with each 
other. This can be used for many purposes, including the isolation of sensitive 
applications, and permitting applications to be developed, validated and potentially 
certified separately. A partitioned system is shown in Figure 1.  

  

Figure 1: TSP Architecture 

TSP is typically implemented using tight coordination between operating system (OS) 
and hardware features. A memory management unit (MMU) gives the OS an efficient 
mechanism to enforce spatial partitioning of mapped memory. A MMU may be used 
to protect memory regions from undesired read or write operations by applications 
which should not have access. Temporal partitioning is typically enforced through a 

Separation Microkernel 

Hardware 

Partition 

Partition OS 

Application 

Partition 

Partition OS 

Application 

Partition 

Partition OS 

Application 

SpaceWire Missions and Applications

466



periodic timer interrupt which cannot be blocked or intercepted by applications. The 
interrupt is handled by the OS, which is responsible for saving the state of temporally 
partitioned resources and preparing them for access by another application. 

The Integrated Modular Avionics (IMA) architecture [1], deployed on recently 
developed commercial aircraft such as B787 and A380, heavily utilizes TSP.  In more 
traditional avionics architectures each element of the system is provided on a number 
of dedicated hardware units. In contrast, IMA permits accommodation of the 
computing functions of several system elements in common computing hardware and 
the use of shared communication networks.  Typically this reduces the weight of the 
system and costs in development, system supply and maintenance. 

The space industry has a number of similar requirements to both the aviation and 
automotive industries, which has lead to the investigation of the potential for 
“spinning-in” IMA technology, using TSP, into the space domain with studies such as 
the ESA IMA for Space activity [2]. 

2.2 PARTITIONING FOR SECURITY 

As part of the ongoing Securely Partitioning Spacecraft Computing Resources activity 
(ESA Contract No. 22186/09/NL/LvH) led by SciSys, a study was conducted into the 
future security needs for primes and agencies.  The study identified a wide range of 
scenarios in which security needs may affect onboard computing resources, such as 
multi-agency spacecraft, dual-use  missions and assisting spacecraft manufacturers in 
meeting export regulations.  In the reference architecture, a spacecraft features two 
imaging payloads: one standard resolution, to which access is not restricted; and one 
very high resolution payload, to which access must be restricted for commercial, legal 
or national security reasons.  To ensure that the security needs for such a mission are 
met, the onboard systems must be able to guarantee confidentiality and integrity of 
information relating at different security levels.  To reliably ensure that these security 
needs on a computing platform, the system designer has a number of options: 

• A so-called “system-high” approach, operating the entire spacecraft, including 
all software applications, at the highest level of security required. This has 
major implications on the cost of system development and validation. 

• Separate the elements of the system which correspond to different security 
levels onto separate hardware, limiting their interaction and adding a mass, 
power and volume penalties. 

• Permit applications handling information at different security levels to be 
combined on a single computing platform by associating security information 
with each system entity (applications, devices etc.) and controlling access 
through security policies and mechanisms implemented in the operating 
system. 

In the third approach presented above, the resulting multi-level security (MLS) 
operating system is typically large and complex, preventing assurance of its operation.  
A solution to this problem is to require the operating system to provide only reliable 
separation mechanisms; security levels and policy then become issues for applications 
and the operating system becomes simpler. 
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This solution is known as Multiple Independent Levels of Security (MILS) [3] and is, 
in many ways, similar to the TSP used in systems such as IMA, with the addition of 
security requirements. A system taking a MILS approach will be structured like that 
shown in Figure 1, with a small operating system, the separation microkernel, 
enforcing time and space partitioning, and applications in partitions, which may have 
their own operating systems. 

This architecture shares many features with those of hypervisors and virtual machine 
monitors.  The partition applications should be unaware of the other partitions on the 
system; in theory it should not matter if two partitions are executed on the same, or 
different, hardware platforms from each other.  In a system where the largest concern 
is safety this separation is enforced to ensure a partition, either through normal 
operation or by malfunction, can not unintentionally influence the integrity of another 
partition. In a secure system this concept is extended to enforce both the integrity and 
confidentiality domains for the partitioned applications, i.e. it must not be possible to 
transfer information between two partitions, except where explicitly permitted by 
security policy. At the same time, the spectrum of statistical threats of malfunction 
and environmental influence is enlarged by the presence of a qualified, malicious 
human attacker. In the context of confidentiality, a covert channel is defined as any 
communication between partitions that is in contravention of the the system security 
policy. Two types of covert channels are typically considered: a storage channel 
involves the modification of a shared object, the state of which is used to transfer 
information; whereas a timing channel involves affecting the relative timing of 
observable events, such as the observation of the storage or timing events of one 
partition by another, which is used to impart information. 

2.3 SPACEWIRE IN A TSP SYSTEM 

Clearly, an onboard computer does not exist in isolation: it must interface to other 
onboard devices in order to receive inputs and produce outputs.  SpaceWire is 
growing in popularity as an onboard communications medium, and is increasingly 
being used to interface onboard computers to both payload and platform devices.  The 
effects of introducing SpaceWire into a securely partitioned system (i.e. one using 
secure TSP) fall into three categories: 

• the interface between the onboard computer and the SpaceWire network, this 
may be part of a System-on-Chip (SoC) or it may be a separate device; 

• the SpaceWire network itself, and what can be done to avoid the costs of 
creating two, or more, independent networks for different security levels; 

• the communications software architecture, executing on the onboard 
computer, which is used by applications to interact with SpaceWire devices. 

These topics are addressed in the following sections.  As will be shown, SpaceWire is 
well suited for use in a securely partitioned architecture: a routed network is 
inherently more flexible and easier to secure than a shared medium bus such as MIL-
STD-1553B or CAN. 
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3 SECURELY PARTITIONING THE SPACEWIRE INTERFACE 
Where the SpaceWire network interfaces to the onboard processor, consideration must 
be given to the principles of TSP.  Such considerations impact the way in which the 
SpaceWire interface(s) is/are to be connected to the processor, affecting address 
decoding and the use of interrupts and DMA. 

As mentioned above, the MMU is the typical mechanism for enforcing spatial 
partitioning.  In order to control access to interfaces, such as SpaceWire, all parts of 
the interface must be memory mapped.  The use of alternate address spaces which are 
not controlled by the MMU, such as dedicated I/O spaces, should be avoided.  
Although the use of such spaces is typically restricted to a privileged processor mode, 
this requires the operating system to be involved in I/O transactions, as no application 
is permitted to run in a privileged mode, and increases its complexity.  Where a 
system has multiple SpaceWire interfaces, it may be advantageous to permit these 
interfaces to be used by individual partitions, independently from one another.  This 
requires that the memory-mapped resources associated with each interface are distinct 
(i.e. no shared registers) and that they fall into separate memory pages, so that access 
may be controlled with the MMU.  The use of an MMU implies that an application 
sees only virtual, rather than physical, addresses.  An interface, such as SpaceWire, 
however, will see physical addresses if it attempts a Direct Memory Access (DMA) 
transaction.  Additionally, a contiguous region of virtual memory does not necessarily 
ensure a contiguous region of physical memory: it may therefore be difficult for a 
partition application to set up and manage DMA transactions without considerable 
operating system assistance.  One way to address these issues is to introduce an I/O 
MMU, mapping virtual to physical addresses for devices. 

Although these techniques ensure spatial separation, the use of DMA causes issues 
with temporal partitioning.  A DMA transaction claims use of the memory bus, and 
access to the memory, which prevent access by the processor.  Although the processor 
may be executing out of cache this cannot be guaranteed.  Should a DMA transaction 
on behalf of one partition occur during the processor time allocated to a second 
partition, this may affect the safe operation of the second partition and also permit the 
second partition to observe one part of the first partition’s operation.  Without special 
provisions, therefore, DMA is not a safe technique in a TSP system, whether or not 
security is a concern.  One way to permit the use of DMA is to utilise dedicated, dual-
ported, DMA regions for each interface (see Figure 2).  Access to these regions by the 
SpaceWire interface is largely independent to that of the processor and processor 
timing is not affected by DMA accesses.  Buffer management operations, such as 
updating read and write pointers, need to be designed to permit concurrent access. 

Just as an asynchronous (as far as processor execution is concerned) DMA transaction 
adversely affects temporal partitioning, so does the use of interrupts.  In a similar 
manner to DMA transactions, the occurrence of an interrupt will change the execution 
flow of the processor and the timing of an executing partition.  If hardware buffers are 
appropriately sized a minimum interrupt inter-arrival time can usually be assumed and 
with a suitable scheduling scheme, applications may meet their real time deadlines.  
However, such impacts on predictable partitioning are likely to be observable from 
unrelated partitions, creating an obvious covert channel.  The only reliable way to 
mitigate this risk is to use polling to service interfaces. 
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Figure 2: SpaceWire Interface using DMA on Dual-Port RAM 

In the case of a SpaceWire interface, providing FIFOs are sufficiently sized for link 
transmit and receive rates, it should be possible to handle data transfers using polling.  
The handling of time-codes is potentially more complicated, and depends on the 
interpretation of time-codes in the system.  If the arrival time of a time-code is critical, 
for example to update a local time counter, the handling of this may be best done 
without software intervention, as waiting for a polled response may introduce an 
unacceptable delay. 

4 SECURELY PARTITIONING THE SPACEWIRE NETWORK 
The most obvious way to separate SpaceWire resources corresponding to different 
security levels is to construct several distinct SpaceWire networks.  These networks 
can be accessed from separate interfaces at the processor, using the guidance above.  
However, if these separate networks are any more that single links, this technique 
involves the duplication of routing resources, potentially resulting in mass, power and 
complexity penalties. 

One way to safely partition a SpaceWire network is to restrict the destination address 
at the head of packets transmitted through an interface.  Such a restriction may be 
implemented in either hardware or trusted software and involves only the first byte of 
the packet.  Firstly, by restricting packets to use only logical addressing, it can be 
assured that the interface may not address packets to the configuration port of a router, 
or any other device.  This ensures the safety and security of a configured network.  
Secondly, by restricting the logical addresses to which an interface may address 
packets, the network may be spatially partitioned along lines of function, security, or 
whatever suits the mission.  This scheme directly associates logical addresses with 
security domains, and may require multiple logical addresses per node. This argument 
holds as long as logical addresses are never deleted by a router, so-called regional 
logical addressing.  If this is not the case, and logical addresses are deleted, a further 
check must either be made at the interface (for the second logical address) or, more 
elegantly, at the entry point to this new region.  The only interfaces that may 
configure the network are those permitted to use path addressing, which, having 
unrestricted access to all devices, must be fully trusted.  The scheme outlined here 
permits the strict spatial partitioning of a SpaceWire network, requiring changes only 
to interface hardware and/or software, with no changes necessary to routers.   

SpaceWire Missions and Applications

470



A spatially partitioned network is sufficient providing that no resources, i.e. devices or 
links, are shared between partitions.  As routers are generally full crossbar devices, 
they may be shared between partitions without compromise.  Where resources are 
shared, these must be temporally partitioned.  As with the partitioning of processor 
execution time, to ensure both safety and security this network bandwidth partitioning 
must be deterministic. 

Recent work has seen a number of proposals for the introduction of deterministic 
and/or low-latency traffic on SpaceWire networks, with the aim of handling time-
critical command and control data.  The SpaceWire-RT [4], SpaceWire-T [5] and 
SpaceWire-D [6] protocol proposals all share a common approach in that network 
bandwidth is time division multiplexed, with SpaceWire time-codes indicating the 
boundaries between time slots.  This technique is deterministic and requires no change 
to network routers for its operation.  Time slots are pre-allocated to interfaces by the 
system designer, such that the available bandwidth of any shared resource, including 
those shared between multiple interfaces, is not exceeded.  As with the spatial 
partitioning case, this primarily relies on trusted network interfaces on all devices.  
The handling of non-trusted devices would require the enforcement of the network 
schedule either between device and router, or within a modified router. 

Another proposal for the division of network bandwidth, utilises virtual channels to 
multiplex many channels of traffic over a single link, and by extension, an entire 
network [7].  The bandwidth of a link is given to whichever virtual channel has data to 
send and is of the highest priority.  Low latency is assured by permitting high priority 
traffic to pre-empt low priority traffic.  Whilst this scheme does successfully permit 
ad-hoc low latency traffic, without careful design low-priority traffic can be starved 
from a network.  Furthermore, for secure partitioning purposes, the delivery of traffic 
of any but the highest priority is non-deterministic.  This non-determinism may be 
accounted for in terms of system safety, but gives rise to the potential for covert 
channels, the risk of which is application dependent.  The use of virtual channels, 
then, may not be sufficient on its own, requiring the introduction of time division 
multiplexing to ensure fairness and determinism.  In this case the various virtual 
channels need not be treated hierarchically, but could be scheduled, for example, 
cyclically at routers.  Whilst elegant and guaranteeing temporal partitioning, such a 
technique would require wholesale changes to both interfaces and routers.  

As can be seen from the discussion in this section, SpaceWire routing resources form 
a critical part of a network.  Existing routers may be utilised through the introduction 
of trusted software and/or hardware at every interface.  This assumes that the target of 
the security effort is the TSP system, and that the potential complexity of such a 
trusted interface is sufficiently low to permit security assurance.  If the network itself 
is to be secured against un-trusted devices, logical address and time slot verification 
functions would have to be incorporated into routers. 

Trust in routing resources is key to the operation of a securely partitioned SpaceWire 
network.  The configuration of routers has the potential to enforce spatial and, perhaps 
in the future, temporal partitioning.  However, during the power up of a router, before 
it has been configured, it is potentially vulnerable to configuration by an un-trusted 
device.  One way to prevent this issue is to associate a small configuration ROM with 
each router, from which a failsafe configuration may be loaded.  This would “lock 
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down” the network into a safe and secure state, pending configuration from a trusted 
source. 

5 SECURELY PARTITIONING ONBOARD COMMUNICATIONS SOFTWARE 
The previous sections have left open the issue of where, in a partitioned architecture, 
the software stack responsible for communications should be placed.  In Section 3, the 
possibility for assigning SpaceWire interfaces to partitions was discussed; however, in 
Section 4, the introduction of sanity checks on destination logical addresses could 
require trusted interface software.  This indicates a trade-off between a decentralised 
approach, in which the operations of partitions are self-contained and may be 
validated separately; and a more centralised approach in which a single, trusted, 
partition is responsible for managing the SpaceWire interfaces. 

The latter approach was taken by SciSys in the Payloads with Resource-efficient 
Integration for Science Missions (PRISM) project.  Here, the RTEMS operating 
system was modified to include temporal partitions, including the enforcement of both 
processor execution time and I/O bandwidth budgets.  Including the concept of I/O 
partitioning in the system architecture permitted the I/O handling software to be 
located in a single system partition, and shared between other applications.  Whilst a 
promising approach for integration and increased safety, the PRISM operating system 
is relatively complex and would be difficult to assure for security purposes. 

The best way to reduce the potential assurance effort is to minimise the size of the 
trusted component.  A good example is the application of the CCSDS SOIS stack [].  
Here, the SpaceWire subnetwork services could be associated with an individual 
interface, perhaps in a trusted partition, whereas the application support services 
would be placed in one or more un-trusted partitions.  Especially where there is good 
hardware support, the SpaceWire subnetwork services may be relatively simple, 
increasing the potential for assurance.  The SOIS architecture provides a good 
template for the decentralisation/centralisation split in the onboard communications 
architecture. 

6 CONCLUSIONS 

6.1 REQUIREMENTS FOR THE USE OF SPACEWIRE IN A SECURELY PARTITIONED 
ARCHITECTURE 

As a routed network of flexible topology, SpaceWire has the potential to integrate 
well into a securely partitioned system.  However, there are a number of challenges 
when applying secure TSP to SpaceWire: some are specific to SpaceWire and others 
less so. 

At the interface level, consideration should be given to the potential for spatially 
protecting interfaces using the MMU.  This requires memory-mapped hardware, laid 
out in consideration for page boundaries.  Shared resources, such as the processor, 
must be deterministically shared in time and therefore cannot be disrupted by 
asynchronous events such as DMA or interrupts.  The design of SpaceWire interfaces 
and driver software should account for this. 
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At the network level, it is possible to spatially partition a SpaceWire network using 
logical address verification at interfaces and careful network design.  Deterministic 
temporal partitioning, such as that employed in SpaceWire-(R)T and SpaceWire-D, 
meets the requirements for TSP; whereas the use of virtual channels may not when 
applied alone.  With the addition of time-division multiplexing it becomes more 
powerful.  Simple network TSP can be introduced using trusted hardware/software at 
interfaces, and is sufficient if the focus of security requirements is a software TSP 
system.  The introduction of un-trusted devices on a SpaceWire network necessitates 
modifications to router technology.  To ensure router enforcement of partitioning, 
routers should ideally use a configuration ROM to ensure a trusted boot. 

At the software level, where an interface must be trusted, and shared between multiple 
partitions, the trusted code should be minimised.  The subnetwork layer in SOIS is a 
logical point to split the communications stack. 

6.2 LOOKING TO THE FUTURE 

SpaceWire has the potential to play a central role in TSP architectures including 
securely partitioned onboard systems, providing that consideration is given to the 
topics presented in this paper.  Some issues, such as those at the interface level, can be 
addressed in the short term, either by use of existing devices or minor modification to 
current IP.  A SpaceWire network can be securely partitioned using current 
technology, providing all node interfaces are trusted.  Relaxing this caveat requires 
modification to routers: as the arbiter of network traffic, routers are the appropriate 
place for the secure control of network bandwidth.  For the current generation of 
SpaceWire devices such changes would be an addition or modification to standard 
behaviour; as thought is given to the next generation of SpaceWire technology, it is 
suggested that (secure) TSP should be carefully considered as it is likely to become an 
important technique in the design of spacecraft onboard systems. 
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ABSTRACT 

Future space missions require high-performance on-board processing capabilities and 

a high degree of flexibility. State of the art radiation tolerant SRAM-based FPGAs 

with large gate count provide an attractive solution for in-flight dynamic 

reconfigurability. With these devices an advanced System-on-Chip (SoC) can be 

implemented, but also the system reliability and qualification has to be guaranteed for 

the harsh space environment. Therefore single modules have to be isolated from the 

system physically and logically by qualified communication architecture, presented in 

this paper: The SpaceWire based System-on-Chip Wire (SoCWire) communication 

network. SoCWire provides a safe way to dynamically reconfigure parts of the FPGA 

during flight. First verification results of a dynamic reconfigurable SoC based on 

SoCWire are presented. Developed around SoCWire, the basic architecture for an 

advanced Dynamic Reconfigurable Processing Module (DRPM) is proposed. 

1 INTRODUCTION 

For data processing of payload instruments on scientific spacecrafts specific 

processing modules are commonly used. With increased data rates and the 

requirement to control multiple sensors, the need for increased on-board processing 

capabilities and a higher degree of instrument autonomy grow. While there are higher 

requirements for a data processing on the one hand, on the other hand some basic 

conditions remain still the same, i.e. limited downlink capacity, limited resources of 

power and mass. Also the need for shorter development times and the demand by 

scientists to adapt the instrument to mission specific requirements even after launch 

require an advanced architecture. This leads to an in-flight adaptable hardware 

architecture, which guarantees the once on-ground achieved qualification even after 

partial exchange of hardware modules.  

Enhanced Dynamic Reconfigurable Processing Module for Future Space Applications

475

mailto:bubenhagen@ida.ing.tu-bs.de
mailto:fiethe@ida.ing.tu-bs.de
mailto:michalik@ida.ing.tu-bs.de
mailto:paul.norridge@astrium.eads.net
mailto:christopher.topping@astrium.eads.net


Today the SRAM-based Virtex FPGAs from Xilinx provides high logic capacity and 

thus offer a highly flexible platform to implement a reconfigurable System-on-Chip 

(SoC) in a single device. These devices are available in radiation tolerant versions and 

already have proven reliable flight heritage in many space missions, e.g. ESA Venus 

Express (VEX) or NASA Dawn. However, the full flexibility of these devices to 

perform complete or partial reconfiguration even during operation was only used 

throughout the development phase on ground so far. 

For an enhanced reconfigurable system the system qualification has to be guaranteed. 

Effects during the reconfiguration process, space radiation induced errors and 

interference of updated modules on the system have to be prevented. Therefore, 

updated modules have to be isolated physically and logically by a qualified 

communication architecture from the system. 

This paper presents the key element for such an enhanced architecture, the SpaceWire 

based System-on-Chip Wire (SoCWire) communication network. SoCWire provides a 

safe way to dynamically reconfigure parts of the FPGA during flight. First verification 

results of a dynamic reconfigurable SoC based on SoCWire are presented. At last the 

basic architecture for an advanced processing module is proposed. 

2 EFFECTS WITHIN A RECONFIGURABLE FPGA 

The use of Xilinx SRAM-based FPGAs for a dynamic reconfigurable system requires 

considering of two effects: (i) glitch effects, which occur during the dynamic partial 

reconfiguration process while the FPGA is in operation and (ii) SEUs (Single-Event-

Upsets) within the space environment. 

Partial reconfiguration denotes the modification of a limited, predefined portion of a 

FPGA. A minimal reconfigurable system consists of a static area, which remains 

unchanged and a Partial Reconfigurable Area (PRA), which is shared by  two or more 

Partial Reconfigurable Modules (PRMs) with different functionality. Xilinx FPGAs 

have no explicit activation technique for a PRA. Therefore the configuration frames 

become active as they were written. Configuration bits remaining unchanged will not 

glitch during reconfiguration, but bits with a change of its logical state could 

momentarily glitch when the frame write is processed. Experiments with 

reconfiguration of a PRA from PRM1 to PRM2 and vice versa have shown 

unpredictable behaviour for both, the duration of glitches and their influence on the 

interface between the PRM and the static area. 

A SEU is caused by charged particles losing energy by ionizing the medium which 

they pass and leaving behind electron-hole pairs. Within a memory cell or flip-flop 

this can cause a change of state and consequently corrupt the stored data. The 

configuration for the programmable elements and routing resources of a Xilinx FPGA 

is stored within static memory cells. Falsified memory cells can be corrected by 

“scrubbing”, i.e. continuous reloading of configuration memory with the initial 

design, but this does not prevent a propagation of an error through the system. 

Techniques like Triple Modular Redundancy (TMR) can mitigate error propagation. 

The drawbacks of TMR are higher resource utilization, a decrease of speed due to 

longer paths and an increase of current because of more logic. Typically processing 

units for scientific instruments are not mission critical. As result a trade-off between 

limited resources and instrument availability is partly applied TMR. Anyhow, a SEU 

SpaceWire Missions and Applications

476



in a non-TMR PRM interface logic could block the communication architecture and 

stop the system. 

Taking into account glitch effects and SEU induced errors during dynamic partial 

reconfiguration the system qualification in a classical bus-based architecture within a 

FPGA cannot be guaranteed. An enhanced architecture is required, which isolates 

PRMs from the TMR protected host system to guarantee uninterruptable operation of 

the system. 

3 SYSTEM-ON-CHIP WIRE (SOCWIRE) 

SoCWire has been developed to provide a Network-on-Chip (NoC) architecture 

which is able to connect several PRMs with a host system and concurrently isolate the 

PRMs logically and physically. SEU induced error, glitch effects or an intended 

replacement of a module does not affect the operation of the remaining system. 

3.1 SOCWIRE BASICS 

Available spacecraft communication standards, e.g. MIL-STD-1553B, CAN bus, 

SpaceWire were analyzed and compared for their suitability for a NoC. The outcome 

of this analysis was that SpaceWire as an asynchronous, point-to-point, bi-directional, 

serial link interface with a credit-based flow control, error detection, hot-plug ability 

and automatic reconnection after a link disconnection [1] is currently the only 

available switch topology and most suitable for a fault-tolerant and robust NoC 

approach. As mentioned before SpaceWire is an asynchronous interface and 

performance depends on skew and jitter. Reconfigurable processing modules are 

implemented within a complete on-chip environment (NoC approach). Therefore, the 

Spacewire interface has been modified to a synchronous, 10bit parallel data interface 

(8bit data, control flag, parity bit), which results in significantly higher data rates 

compared to the SpaceWire standard, e.g. 800Mbit/s at clock frequency of 100MHz. 

Additionally, the data word width is scalable from 8bit to 128bit, which further 

improves the throughput. Furthermore, the advantageous and reliable features from 

this standard, such as flow-control, error detection and automatic link recovery in case 

of an error, were preserved. Since SoCWire operates in a complete synchronous 

environment, the timeouts during initialization and detection and recovery after a link 

disconnection could be significantly decreased. 

3.2 SOCWIRE NETWORK 

To build up a network, a switch and a packet oriented protocol is needed. A SoCWire 

network as shown in Figure 1 comprises: SoCWire coder/decoder (CODEC) as 

network interface and a SoCWire switch to route the data packets through the network 

[2]. The SoCWire switch is again based on the SpaceWire standard. A SoCWire 

CODEC connects a node or the host system typically via a SoCWire switch to a 

SoCWire network. The nodes are similar to SpaceWire nodes source and destination 

of a link. The SoCWire switch is scalable from 8bit to 128bit data word width and 

provides a configurable number of up to 32 ports. In contrast to a SpaceWire router 

the configuration port was discarded and logical addressing is not supported to save 

resources. A simple path addressing scheme is implemented instead, which is suitable 

for small on-chip networks. The SoCWire switch comprises wormhole routing and the 

simple time slot based round robin scheduling algorithm.  
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Figure 1 SoCWire architecture network example 

4 SOCWIRE: ARCHITECTURE VERIFICATION 

The objective of SoCWire is to provide a robust communication architecture for 

dynamic partial reconfiguration systems. Since the major requirement for SoCWire is 

the isolation of a PRM, this feature has to be validated in an architecture verification.  

4.1 FUNCTIONAL VERIFICATION 

SoCWire has to be validated on the advantageous features of SpaceWire providing 

link initialization, error detection/recovery and unidirectional and bidirectional data 

rates. The main difference between SpaceWire and SoCWire is that SoCWire 

provides a parallel data interface and operates in a completely synchronous 

environment. The advantage of this point is that SoCWire is more deterministic, 

because any change of state is related to clock cycles. SoCWire is a fully pipelined 

implementation and two clock cycles are required to perform an action. One 

advantage of the synchronous environment is the much faster initialization of a link in 

comparison to SpaceWire. A disconnection is detected after three clock cycles, the 

exchange of silence lasts six clock cycles and the timeout twelve clock cycles. 

Overall, 26 clock cycles minimum are necessary for building up a link on the 

condition that both SoCWire CODECs receive the reset at the same time. Tests with 

adding delays of different length to one of these reset signals always resulted in a 

proper initialization of the link. Both the unidirectional and the bidirectional data 

transfer have been tested with a Pseudo Random Bit Sequence (PRBS) generator 

stimulus to validate data integrity. Furthermore, data packets of different length (1 to 

1048576 bytes) have been tested. In all performed tests no transmission errors have 

been detected and the data rates from the simulations could be verified. Furthermore, 

SoCWire has been tested and validated on the error detection/recovery features of the 

SpaceWire standard, e.g. parity errors, escape errors, character sequence errors, credit 

errors and disconnect errors. Figure 2 depicts the fault injection mechanism for this 

verification. All errors have been successfully injected and error detection and 

recovery could be validated to be SpaceWire conform. The error recovery time of 

SoCWire is at minimum the initialization time for a link plus synchronization 

overhead. 
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Figure 2 SoCWire verification architecture 

4.2 FAULT TOLERANCE 

One mandatory requirement in a space environment is fault tolerance. Single-Event-

Upsets on a SoCWire node within the FPGA can be modelled as stuck bit either at 

logical „0‟ or ‟1‟. This error can occur during a link initialization or during run-time. 

With the programmable fault injection mechanism a certain bit in the link has been 

fixed to one of the logical states. In all performed test a stuck bit either in the link 

initialization phase or during run-time does not affect the functionality of the host 

system and an error is reported. Appropriate error recovery schemes can be applied by 

the user, e.g. scrubbing. 

During the reconfiguration process of a PRM glitch effects occur and affect nearly 

every part of the interface logic for a given time in the range of microseconds. These 

effects impact the link initialization phase when an empty PRA is configured for the 

first time or during an established link connection when a PRM is replaced by another 

one. To verify the impact of glitch effects on a SoCWire CODEC interface, a random 

pattern generator with random delay in the range of nanoseconds to several 

microseconds was implemented in hardware. This generator emulates the behaviour 

on the interface signals which could occur with different PRM configuration patterns. 

Even though this generator does not simulate the real FPGA technology and effects 

during dynamic partial reconfiguration, during the test the SoCWire host system was 

not disturbed in its operation. 

4.3 PARTIAL DYNAMIC RECONFIGURATION 

A dynamic partial reconfigurable SoCWire architecture with host system including 

SoCWire CODEC and a PRM with SoCWire CODEC as well as an additional module 

for control and data generation e.g. PRBS has been implemented. Moreover, a static 

PRM with all outputs ones and a PRM with pure counter functionality have been 

created. The following tests have been performed with the JTAG interface to 

reconfigure the system dynamically: (i) SoCWire counter module to SoCWire PRBS 

module, and (ii) Static module to SoCWire PRBS module. Since dynamic partial 

reconfiguration has the same behaviour as scrubbing on all elements within a module 

which does not change, test (i) was performed to prevent the SoCWire CODEC from 

not being affected by the dynamic reconfiguration process. 

Two behaviours have been observed during the tests, which are shown in Figure 3. 

The figure represents the “active signals” or link connected from the SoCWire 

CODEC core on host system side and on PRM side. (I) shows a smooth dynamic 

reconfiguration of the PRM. Glitches occurred on all PRM outputs during the 

reconfiguration process. (II) shows the glitch effects as well as a repeatedly 

establishing link connection stabilising at the end. There is not much known about the 
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dynamic partial reconfiguration process in Xilinx FPGAs to explain this effect. 

Configuration frames become active when they are written; it is most likely that parts 

of the design operate before the reconfiguration process is finished.  

Host SoCWire  
Link connection

PRM SoCWire  
Link connection

Host SoCWire  
Link connection

PRM SoCWire  
Link connection

glitch

reconfiguration

glitch

reconfiguration

oscillating

(I)

(II)

Link 
connected

Link 
connected

Figure 3 SoCWire "active signals" during dynamic partial reconfiguration 

Since the configuration memory within a Xilinx FPGA is written from the left to right 

side [3], also the influence of bus macro placement, which establishes communication 

between static area and PRAs, has been analysed. During the initial tests the bus 

macros were placed on right side of the PRM as depicted in Figure 4 on the left hand 

side. Tests with placement of the bus macros on the right hand side of the PRM 

showed a smooth stable link connection avoiding the oscillation effect. Even with 

oscillating behaviour during the dynamic partial reconfiguration process, the PRMs 

were isolated from the host system and do not have any effect on its operation. 

PRM

Reconfiguration

Frame

Bus macro

Static

PRM

Static

 

Figure 4 PRM bus macro placement 

5 DRPM ARCHITECTURE 

Around the SoCWire communication architecture we are currently developing under 

ESA contract a flexible processing system with full support for in-flight dynamic 

partial reconfiguration of application firmware, the Dynamic Reconfigurable 

Processing Module (DRPM). The basic DRPM architecture is shown in Figure 5 [4]. 

The major subunits are (i) dynamically reconfigurable FPGAs (within each DFPGA), 

(ii) SpaceWire router for hosting and managing the networking between various 

subunits, (iii) system controller for overall configuration control of the module and 

execution of application software, (iv) interfaces to spacecraft using standards like 

SpaceWire, MIL-1553B and CAN bus, and finally (v) interfaces to the instrument 

electronics, e.g. sensors or cameras. 

The DRPM comprise a highly modular architecture. Consequently, the SpaceWire 

router can provide expandability not only to additional DFPGAs, but also to 
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additional DRPMs. With this concept it is possible to simply extend the processing 

capacity by attaching additional modules or adding modules for hardware redundancy. 

Then one system controller would be the master and the other ones slaves. 

 

Figure 5 DRPM architecture 

Since the system controllers‟ main task is controlling and supervising the overall 

DRPM, a fault-tolerant processor implementation should be used for this subunit. For 

instance, the LEON-based SpaceWire RTC ASIC (AT7913E) already incorporates the 

required interfaces like RMAP compatible SpaceWire and CAN bus controller. Of 

major importance is a safe and flexible implementation of the high capacity non-

volatile memory for secure storage of all partial configuration bit files needed for the 

DFPGAs. Each reconfigurable DFPGA consists of configuration controller containing 

the static area with common interfaces and one or several reconfigurable FPGA(s), 

mainly comprising the dynamic area. This basic architecture is depicted in Figure 6.  
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Figure 6 DFPGA architecture 
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The configuration controller is responsible for configuration, verification and 

supervision of PRMs within the dynamic area. It is implemented within a TMR by 

design one-time programmable RTAX FPGA. Two independent SoCWire 

communication networks form the backbone for controller functionality. One network 

is responsible for secure dynamic configuration and scrubbing of reconfigurable 

FPGA(s). The other one connects the dynamic area with the processor of the 

controller, instrument interfaces and a large local data memory. To achieve high 

reliability this memory is implemented in the static area with advanced symbol error 

correction capabilities for secure temporal storage of local configuration files. The 

independency of the two SoCWire networks provides increased reliability. The 

processor is required to provide data-flow control functions for the allocation and 

access of various interfaces to the commonly used data memory and configuration 

management of the attached reconfigurable FPGA(s). The dynamic area is based on 

Xilinx Virtex-4 FPGAs which are available on reliable packaging and certified for 

radiation performance and reliability. The SoCWire switch within the small static area 

of the reconfigurable FPGA(s) connects to the different PRMs and optionally directly 

to external high-speed interfaces, e.g. Channel Link. To achieve a modular 

architecture, the switch provides also direct data exchange between different 

reconfigurable FPGAs or even DFPGA subunits. 

6 CONCLUSION 

The DRPM provides an architecture being suitable to satisfy the demand of future 

space missions for high performance on-board processing with the requirement to 

update processing modules in-flight. One issue within such an enhanced architecture 

is the guarantee of system qualification, even after an update of a processing module. 

SpaceWire is widely used as a proved reliable interface standard on-board spacecrafts. 

Modifying this standard to the fault-tolerant, high-speed on-chip communication 

architecture SoCWire for FPGAs offers the possibility to built-up systems where 

processing modules can be exchanged without affecting the operation of the host 

system. SoCWire is published as an open source project provided by IDA. Source 

code, documentation and testbenches can be accessed at www.socwire.org. 
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ABSTRACT 

We report a data acquisition framework for scientific instruments based on SpaceWire 

interfaces. The framework consists of computers and front-end electronics which have 

SpaceWire ports in their small footprints. RMAP protocol stack, portable class 

library, and a template of hardware logics are provided with these hardwares for users 

to implement their own applications. The framework has been employed in multiple 

practical developments mainly for Japanese X-ray satellite. The protocol stack was 

also utilized in a flight model of the Japanese small demonstration satellite which was 

launched in 2009, and successfully tested its SpaceWire and RMAP functionality in 

orbit. 

1 SPACEWIRE-BASED DATA ACQUISITION FRAMEWORK 

1.1 BUILDING BLOCKS 

As shown in Figure 1, our data acquisition framework consists of four principal 

components. 

Scientific instruments - output scientific data as analog and digital signals, 

Front-end SpaceWire boards - receive the data and stores them into SDRAM. A 

typical SpaceWire board has two FPGAs on it; one is dedicated for SpaceWire/RMAP 

IP core, and users can implement instrument-dependent hardware logic to the other 

one. The SDRAM and the users FPGA can be accessed via RMAP. 

SpaceWire router - connects multiple SpaceWire links constituting a network.  
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Read-out control computer - executes users' read-out program to transfer the data 

from the boards via SpaceWire/RMAP. The data can be stored on the computer itself, 

or on a remote PC. 

In laboratory experiments (or non-flight experiments), products by Shimafuji Electric, 

presented in Figure 2, are utilized as these components. Shimafuji’s 6 Port Router, 

whose size is almost the same as that of SpaceCube, became available recently. In 

some experiments, an 8-port  router from NEC Corp has been used. Footprints of 

these products are fairy small compared to conventional crates and modules of VME 

or CAMAC systems, and SpaceWire has network capability not just a data bus. These 

greatly contribute to make the experimental setup compact and logically well 

structured. The setup is also highly scalable since we can increase the number of 

instruments and attached front-end circuit boards by simply introducing new routers. 

The link speed of SpaceWire interfaces of the front-end SpaceWire boards and 

SpaceCube computer is variable, and usually we operate them at 100 MHz.  

         

 

 

1.2 PROVIDED SOFTWARES AND THEIR FEATURES 

An RMAP protocl stack and related class libraries for user programs on SpaceCube is 

available in C++ language (SpaceWire/RMAP Library [2]). They are designed to be 

portable, i.e. independent from hardware types and operating systems, and 

Figure 2 : An example of a front-end SpaceWire board, SpaceWire Digital IO (left), 

SpaceWire 6 Port Router (center), and SpaceCube computer (right) by Shimafuji 

Electric. For specs, see e.g. [1]. 

Figure 1 : Components used in the present SpaceWire-base data acquisition 

framework. User defined logic and program can be implemented on front-end 

boards and SpaceCube computer, respectively. 
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implementations of the system dependent layers for TRON-base realtime operating 

system (SpaceCube) and POSIX (Linux and Macintosh) are included. Therefore, once 

a user writes a program along with the library, its source code can be used to produce 

binaries for both of SpaceCube and ordinary PCs by just re-compiling. 

If there is no SpaceWire interface available on an ordinary PC, SpaceCube can be a 

virtual SpaceWire interface via TCP/IP (Ethernet) as presented in Figure 3. A protocol 

converter provided with the library should be started on SpaceCube, and it seamlessly 

transmits SpaceWire packets to a user program running on a PC over TCP/IP 

connections. The basic idea is describe in detail in [3] and references therein. With 

this protocol converter, a development and debugging of a user program become 

easier since most of work can be done on a PC. Therefore, if an additional PC (its size 

and cost) is acceptable in an experiment, it is worth considering to execute a user 

program on a PC not on SpaceCube. Since this is a software protocol converter, 

information of the character level cannot be reconstructed; e.g. NULL does not appear 

in a TCP/IP end. 

We have also been providing a template VHDL files for a hardware logic for an 

FPGA on a front-end circuit board [1]. The template includes several typical 

functionalities, needed to construct instrument-dependent logics, such as an on-chip 

data bus, a bus adapter, and a skeleton for registers and user original modules. RMAP 

accesses to a front-end board are translated into local bus access to the FPGA. The 

FPGA, or user logic on it, can respond to an RMAP Read and Write accesses by 

returning data to the local bus and by updating register value with data passed via the 

local bus, respectively. 

From 2008, the source code of the SpaceWire IP core and the RMAP IP core used in 

Shimafuji’s products is publicly released via their web site so that users can 

implement it into their own circuits.  

 

1.3 PERFORMANCE 

When a link is operated at 100 MHz, SpaceCube transfers SpaceWire packets at ~30 

Mbps without any packet processing. If the software RMAP implementation is used in 

a user program on SpaceCube, data transfer rate drops to ~8 Mbps because of 

emerging CPU load. The SpaceWire-to-TCP/IP converter does not interpret packet 

content but just transfers them to/from a SpaceWire interface and a TCP socket. 

Therefore, in this case, the transfer speed is limited by the maximum transfer rate, ~10 

Mbps, of a TCP protocol stack used in SpaceCube over its 100 Mbps Ethernet 

interface.  

Figure 3 : An example 

experiment which utilizes  

SpaceWire-to-TCP/IP 

converter on SpaceCube. 

A user program runs on a 

PC, and transfers 

SpaceWire packets via a 

SpaceWire interface of 

SpaceCube. 
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2 PRACTICAL EXAMPLES 

2.1 APPLICATIONS IN GROUND EXPERIMTNS 

We have been utilizing this data acquisition framework in many real experiments. 

Since our background is X-ray and Gamma-ray astrophysics, examples include 

development and test of a new X-ray microcalorimeter by JAXA, a balloon borne 

hard X-ray mission by Hiroshima and PoGO experiment group, and other radioactive 

measurements. As presented by [4,5], the framework has been put into commission in 

developments of scientific instruments for the Japanese next X-ray observatory 

satellite, ASTRO-H, which is scheduled to be launched in 2014.  

2.2 TEST IN ORBIT 

Japanese Small Demonstration Satellite 1 which has onboard SpaceWire Interface test 

Module (SWIM) together with other test components, was launched in January 2009. 

SWIM consists of two sub-modules flight model of SpaceCube computer 

(SpaceCube2 by NEC and JAXA, [6]) and a scientific instrument module SWIMμν 

with SpaceWire interfaces (Mitsubishi Heavy Industrial Corp, University of Tokyo, 

and JAXA). A subset of the RMAP protocol stack provided in the class library was 

implemented on SpaceCube2, and a user program developed using the protocol stack 

successfully performed scientific data transfer between SpaceCube2 (RMAP master) 

and SWIMμν module (RMAP target) in orbit. This proved that the concept of the 

SpaceWire data acquisition framework works well even in a flight model of a 

satellite. 

3 FUTURE WORK 

To improve the transfer speed of the SpaceWire-to-TCP/IP converter, we may have to 

use GbEther and a TCP/IP stack implemented on a dedicated hardware, e.g. ZestET1 

by Orange Tree Tech, so as to increase the bandwidth and to reduce the CPU load for 

TCP. Since the development of ASTRO-H instruments are becoming very active, it is 

useful for the class library to support breadboard model and flight model of onboard 

computers. 
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ABSTRACT 

This paper presents the solutions adopted for the INTAμSAT-1 Mass Memory Unit, 

which makes use of several high-speed interfaces based on SpaceWire. This MMU 

handles the information coming from 3 medium resolution Earth observation cameras 

and other high data rate experiments in parallel by using 13 point to point SpaceWire 

channels with up to 110 Mbps data rate. The information will be properly formatted, 

stored and queued for later transmission to ground through additional point to point 

SpaceWire nodes connected to the spacecraft X-Band and the S-Band modems, and a 

PTM modulated Laser downlink high speed transmitter. The MMU architecture and 

preliminary tests over a representative prototype to validate the concept are presented. 

1 INTRODUCTION 

INTAμSAT-1 will be the first mission of a new small satellite programme with a 

mass ranging from 80 to 150 kg, and compatible with VEGA, Soyuz-ST and Dnepr 

launchers. The first INTAμSAT-1 will be a nadir pointing satellite with body fixed 

solar panels devoted to R&D remote sensing, with a launch tentative date during 

2012. This enlarged IμSAT class is a further step after the NANOSAT programme 

success with a launch onboard Ariane-V-165 in Dec. 2004 (Nanosat-01 is still 

working in orbit), and the Nanosat-1B, a follow-on UHF store&forward 

communications mission with new experiments, launched from Baikonur by a 

DNEPR in July 2009. Inside the INTAμSAT-1 spacecraft two types of data buses are 

used [1]. The OBDH housekeeping TM/TC data bus, to which all units inside the 

spacecraft will be connected, will use the CAN standard. The Mass Memory Unit 

(MMU) implements several SpaceWire high-speed channels for information exchange 

                                                 
1
 This work has been partially supported by the Spanish Ministry of Science and 
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with the payload equipments and the communications subsystem. Its objective is to 

provide a temporary memory resource in order to store the huge amount of data 

provided by the cameras until it is downloaded to the ground stations.  

2 MMU REQUIREMENTS 

2.1 COMMUNICATION INTERFACES AND BANDWIDTH ASSESSMENT 

The most defining factor in the design of the MMU is the amount of high-speed 

channels to be used simultaneously. The satellite features 3 cameras [2] with several 

CCD outputs, providing many data links even after processing and multiplexing: 

 The CINCLUS instrument provides 8 data signals with a bitrate around 18 

Mbps. Multiplexing results in 2 links producing 72 Mbps each. 

 Each of the two MS-WAC cameras provides 10 data signals with a bitrate 

around 55 Mbps. Multiplexing results in 10 links producing 110 Mbps each. 

 Finally, the PAU experiment requires a single 8Mbps link. 

This results in a total of 13 SpaceWire links with a peak data rate of 1,252 Mbps. Data 

must also be sent to ground, for which the satellite features 3 communications 

systems: A 100 Mbps laser downlink, a 72 Mbps X-Band modem (including 7/8 

Viterbi and 187/204 Reed-Solomon codifications) and an 8 Mbps S-Band modem 

(including 7/8 Viterbi), resulting in a peak bandwidth of 172 Mbps. 

2.2 CAPACITY AND OTHER MEMORY CONSTRAINTS 

It's been determined that a total of 80 Gbits of net storage is necessary for the mission. 

Due to its combination of higher radiation tolerance and reasonably high density, 

SDRAM technology has been selected for mass storage. 

2.3 OTHER CONSIDERATIONS 

Apart from the aforementioned constraints, the MMU must feature a CAN bus 

interface both for command and control, and to provide low-speed storage services for 

other spacecraft subsystems such as the OBDH. Additionally, the need for achieving 

low power consumption and the size constraints (160x200mm double-Europe board 

size), dictate a system with few components and low operating frequency. A single 

FPGA system with a LEON2 synthesized processor and embedded RAM seems like a 

good enough target; specifically an Actel RTAX2000 FPGA has been chosen. 

3 MMU DESIGN 

3.1 PRELIMINARY DESIGN CONSIDERATIONS AND APPROACH 

The fact that the MMU needs to address many SpaceWire channels concurrently 

makes a classical single-CPU data processor approach to the MMU design very 

difficult. The interrupt rate generated and a data stream well above the 100 MB/s 

mark would be difficult to handle by a synthesized CPU with a targeted speed of a 

few tens of Mhz. Direct memory access by the hardware handling the SpaceWire 
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links is clearly a must, and on-the-fly post-processing and formatting of the stored 

data seems infeasible. Another matter of concern is that the imposed 80 Gbits storage 

requirement far surpasses the 4 GB physical addressable memory directly supported 

by typical 32-bit processors such as LEON2. 

A system consisting of several independent SpaceWire controllers with direct access 

to the mass memory managed by a simple CPU-based controller subsystem seems like 

a more feasible approach. The controller is unloaded of the burden of moving data 

back and forth and can be kept as simple as possible. A single-channel 64-bit SDRAM 

memory seems adequate for the application while working at a reasonable 25Mhz 

operating frequency (peaking at 200 MB/s data transfer rate). 

3.2 DETAILED FUNCTIONAL DESCRIPTION 

Given the MMU requisites and design limitations, the only service provided by the 

MMU is raw storage. Data received from each channel will be directly stored in 

memory with no further post-processing or formatting, and will be transmitted to 

ground also in this form. Error checking, data correlation, analysis, etc. will be done 

in the ground station and the packet format (if any) used by the payloads will be 

transparent to the MMU. The OBDH is be responsible of instructing the MMU about 

the memory areas where the data coming from every specific channel is to be stored, 

or what data is to be sent to the communications subsystem. Thus, the MMU is treated 

as a raw storage device and it is the OBDH who accounts for free and used space and 

decides data retransmission or other management decisions. 

 

Figure 1: MMU block diagram 

3.3 BLOCK DIAGRAM 

A SoC design (further explained in the following paragraphs) has been produced, 

represented in the high-level block diagram on Figure 1. The shaded blocks are in-

house developed IP cores, while the light ones are freely available IP cores, slightly 
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modified versions of these or just discrete components. The design is built around a 

slightly customized AMBA AHB bus with modifications to the address space range to 

fit the required addressable mass memory, and wide enough to cope with the required 

data rate while maintaining a relatively low operating frequency. A 36-bit address, 64-

bit data bus has been proposed, potentially leading to a 128-bit data bus 

implementation. The mass memory chips are connected to an in-house developed 

SDRAM controller with slave AHB interface, allowing us to make it adaptable to 

various address and data widths or even different memory technology. This approach 

allows for easy addition of multiple mass memory banks if necessary, by connecting 

more slave memory controllers to the AHB bus. 

The SpaceWire receiver and transmitter elements are kept as simple as possible, 

focusing mainly in high-performance and low FPGA footprint. Transfer parameters 

can be programmed through registers, and once a transfer is activated the IP core can 

receive/send data from/to the SpaceWire link autonomously, much like a 

programmable DMA controller. These elements employ an in-house developed 

SpaceWire IP core codec [3] and have a master AHB interface, which allows them to 

perform read/write operations independently and provides great flexibility since it 

allows adding and removing SpaceWire channels in a very straightforward manner. 2 

or 4 SpaceWire channels are grouped in the same IP core to keep the number of AHB 

masters in the bus below the maximum supported. 

In order to process TC from the OBDH and produce the required TM, the MMU 

features a LEON2 SoC with CAN bus interface as controller subsystem, which is able 

to program the SpaceWire controllers through the AMBA APB bus and perform 

various other operations. The AHB bus of the LEON2 controller subsystem is 

independent from the main AHB bus in order not to cripple performance and to 

override the address and data bus width limitations of the LEON2 CPU. An 

AHB/AHB unidirectional, programmable bridge has been developed which maps a 

programmable window of the controller AHB space into the main AHB bus, thus 

allowing access to the full storage space from the LEON2 controller. Also, since all 

the IP cores connected to the modified version of the AHB bus are developed in-

house, any customization regarding address or data width is possible. 

4 IMPLEMENTATION AND PROTOTYPE 

To help with IP core testing and to prove the validity of the design, a simpler MMU 

demonstration prototype has been produced using a Pender GR-CPCI-XC4V Virtex4 

FPGA development board with the accessory GR-CPCI-SER2-SPW2 mezzanine, 

which provides two SpaceWire ports. The prototype features the same design as the 

final system, but there are only two SpaceWire IP cores, one for input and one for 

output. Also, the main AMBA AHB bus is only 32 bits wide and supports 32-bit 

addresses, and all the AMBA AHB masters and slaves are modified accordingly. The 

two AHB bus approach using the AHB/AHB bridge is used, nonetheless. Finally, the 

LEON2 controller subsystem does not use an external ROM; the firmware is directly 

loaded and run from embedded SRAM using the GRMON tool and the on-board 

SDRAM of the XC4V is used exclusively as mass storage. The firmware running in 

the MMU prototype has been custom built and does not use any operating system, and 

despite reduced functionality is basically the same than the firmware that is expected 

to run in the final system. 
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In order to emulate the payloads, a Gaisler SpaceWire-RTC development suite has 

been used. This system features two SpaceWire links which are used to emulate the 

data stream coming from a payload and a to downlink interface, allowing us to 

building a simplified scenario which is representative of the final solution. It also 

features a CAN bus controller which is used to command the emulator, to configure 

and run the tests. The software running in the RTC uses RTEMS as underlying OS. 

 

Figure 2: Prototype testing scenario 

Finally, a Linux PC workstation with a CAN bus adapter is used to configure and 

control both the MMU prototype and the payload/downlink emulator in the RTC 

through a simple to use visual application. The scenario is shown in Figure 2, and has 

been proved to work as expected with both SpaceWire channels working concurrently 

and the LEON2 controller handling the configuration and control as instructed. 

5 CONCLUSIONS AND FUTURE WORK 

A simple MMU design valid for high data rate, high interface count applications has 

been produced, providing basic raw storage services adequate for certain applications. 

The design is focused in high bandwidth and simple implementation, sacrificing the 

provision of more complex storage services in exchange of the ability to use fewer 

components and lower power. At the same time, the design provides high flexibility to 

provide an easy upgrade path in case a different channel configuration, more memory 

banks or higher fault tolerance is needed, and in the presented scenario it requires only 

the use of a single, medium capacity FPGA. Work is already underway to support 

DDR and DDR2 memory and to improve the developed IP cores to enhance 

performance and reduce footprint. Also, more advanced firmware capabilities are 

being considered to support features such as scheduled data downloading. 
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ABSTRACT 

The objective of the PLATO mission is to detect and characterize exoplanetary 

systems. The PLATO payload is made up of 34 very high-precision photometric 

cameras, each camera having its own CCD focal plane constituted by four 20-million 

pixel CCDs. The huge amount of raw data produced for each exposure has led the 

PLATO Payload Consortium to propose a design of the onboard data processing 

system based on a hierarchical architecture in which the SpaceWire technology is 

extensively used and plays a key role. 

1 INTRODUCTION 

1.1 THE PLATO MISSION 

PLATO (PLAnetary Transits and Oscillations of stars) is one of the three Cosmic 

Vision M-class missions which have been approved on February 2010 by the ESA's 

Science Programme Committee to enter the definition phase.  

The objective of PLATO is the detection and characterization of exoplanetary systems 

of all kinds, including both the planets and their host stars, reaching down to small, 

terrestrial planets in the habitable zone [1]. The PLATO instrumental concept is based 

on an ultra-high precision, long (few years), uninterrupted photometric monitoring in 

the visible of very large samples of bright stars. The resulting high quality light curves 

will be used on the one hand to detect planetary transits, as well as to measure their 

characteristics, and on the other hand to provide a seismic analysis of the host stars of 

the detected planets.  

During the assessment phase which has been completed at the end of 2009, studies of 

the whole mission have been carried out independently by two industrial contractors. 
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At the same time, an assessment study of the PLATO payload (telescopes, detectors, 

cameras, on-board data processing system) has been provided by a consortium of 

research institutes and universities: the PLATO Payload Consortium (PPLC). The 

design of the PLATO payload data processing system presented in this paper is the 

result of the PPLC studies and will serve as a baseline for the further studies of the 

definition phase. 

1.2 INSTRUMENTAL CONCEPT  

The instrumental concept proposed by the PPLC is based on a multi-camera approach, 

involving a set of 32 normal cameras monitoring stars fainter than mV=8, plus two 

fast cameras observing extremely bright stars with magnitudes lower than 8. The 32 

normal cameras are arranged in four sub-groups of 8 cameras. All 8 cameras of each 

sub-group have exactly the same field of view, and the lines of sight of the four sub-

groups are offset by half the size of the field of view. This particular configuration 

allows surveying a very large square field at each pointing, with various parts of the 

field monitored by 32, 16 or 8 normal cameras. This strategy optimizes both the 

number of targets observed at a given noise level and their brightness.  

Each normal camera is equipped with its own CCD focal plane array (FPA) 

constituted by four 20-million pixel CCDs working in full frame mode. The fast 

cameras are equipped of four 10-million pixel CCDs working in frame transfer mode. 

With 32 normal cameras working at the cadence of 25 seconds and 2 fast cameras 

working at the cadence of 2.5 seconds, the amount of raw data produced by the 

PLATO payload at the output of its 136 CCD detectors is close to 189 Terabits per 

day. This volume must be compared to the 109 Gigabits which can be actually 

downloaded each day to the ground. It is clearly not possible to transmit the whole 

amount of raw data. The role of the on-board treatments will be to reduce by a factor 

of more than 1700 the flow rate by downlinking light curves, centroid curves and 

imagettes at the cadence required by the science. 

This huge amount of data to process has led the PPLC to propose a design of the 

onboard data processing system based on a hierarchical architecture in which the 

SpaceWire technology is extensively used and plays a key role at each stage of the 

architecture. 

2 OVERVIEW OF THE PLATO PAYLOAD DATA PROCESSING ARCHITECTURE 

The PLATO payload data processing system is made up of 34 Data Processing Units 

(DPUs) responsible for reducing the data flow by computing light and centroid 

curves. The 34 DPUs are connected to two central Instrument Control Units (ICUs) 

through a SpaceWire network built around ten SpaceWire routers to which ten other 

routers are added for the redundancy management. The ICUs are working in cold 

redundancy and are connected to the spacecraft Service Module (SVM) through 

SpaceWire links.  

There is one DPU per camera performing the basic photometric tasks and delivering a 

set of light curves, centroid curves and imagettes to the active ICU, which stacks and 

compresses the data, then transmits them to the spacecraft SVM for downlink. Data 

from all individual cameras are transmitted to the ground, where final instrumental 

corrections, such as jitter correction, are performed. The DPUs of the fast cameras 
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will also deliver a periodic pointing error signal to the spacecraft AOCS (Attitude and 

Orbit Control System). Several photometry algorithms (aperture photometry, 

weighted mask photometry, Line Spread Function fitting) are planned to run on board, 

each star being processed by one of them, depending on its brightness and level of 

confusion.  

For FMEA (Failure Mode and Effects Analysis) concerns and in order to optimize the 

resources (mass, volume, harness), the DPUs of the 32 normal cameras are distributed 

in 8 groups of 4 DPUs. Each group of 4 DPUs is gathered in a box called a Main 

Electronic Unit (MEU). A set of 2 MEUs corresponds to a set of 8 cameras sharing 

the same field of view. A MEU gathers in the same box four DPU boards, 1 power 

supply (DC/DC converter) and 2 SpaceWire routers to merge the data from the DPUs 

toward the ICU (one main and one redundant).  

All the command / data exchanges between the payload units and with the spacecraft 

SVM are ensured thanks SpaceWire links except the AOCS link between Fast DPU 

and the spacecraft SVM. The figure 1 shows the architecture of the PLATO data 

processing system and its SpaceWire network. 

 

Figure1 – PLATO On-board Data Processing Architecture 

3 THE  DATA PROCESSING UNITS (DPUS) 

Each normal camera has its own front-end electronics (FEE) driving the four CCDs 

and transmitting the pixel data to its DPU through a SpaceWire link. At the FEE level, 

no pre-processing such as windowing is done. The full images corresponding to each 

CCD are transmitted entirely. The raw data acquired from the ADC are just serialized 

and sent to each normal DPU through one point-to-point SpaceWire channel. The 

communication between the FEE and the DPU uses a point-to-point SpaceWire 

channel without any router in order to guarantee the real-time constraints on this 

interface. Over a period of 25 seconds corresponding to the CCD readout period, each 

The PLATO Payload Data Processing System

495



normal DPU receives 4 CDD full-frame images (one 330-Mb image / 6.25 seconds). 

Each CCD full-frame image is entirely stored in SDRAM memory before processing. 

The RMAP protocol [3] is used to transfer at a very high rate close to 160 Mbps the 

full frame images directly to the DPU memory without any cost for the DPU software. 

The CPU occupation rate needed to acquire and to store the full-frame images shall be 

negligible: this is a strong requirement. The CPU resources shall be reserved for the 

photometric treatments of the 120.000 stars distributed on the four CCDs. The DPU 

hardware module in charge of the image reception relies on the DMA (Direct Memory 

Access) technology and provides a hardware implementation of the RMAP protocol. 

Using DMA and RMAP technologies, it could be possible to have an image transfer 

fully transparent for the CPU: the RMAP protocol is particularly well suited for this 

kind of application. The core of the normal DPUs will be a LEON-FT processor chip 

ideally integrating SpaceWire interfaces with RMAP and DMA support. 

Unlike the normal DPUs, the fast DPUs receive the pixel data from the FEE of their 

respective camera through 8 specific LVDS high speed serial links (one link per CCD 

output): using 8 SpaceWire links was considered too costly in term of resources and 

merging the 8 outputs to one channel leads to a flow rates greater than 600 Mbps 

which is not compatible with the SpaceWire performances. 

4 THE INSTRUMENT CONTROL UNITS (ICUS) 

Both ICUs work in cold redundancy. They play the role of the payload conductor: 

they schedule the DPU tasks by the way of commands, manage the mode changes and 

regulate the data flow. They are connected to the eight MEUs and to the two Fast 

DPUs through SpaceWire links. The ICUs use the SpaceWire network to propagate a 

synchronization signal to all the DPUs thanks to the SpaceWire time-code 

functionality [2]. They are also responsible for formatting and transmitting to the 

spacecraft SVM the scientific telemetry packets and the housekeeping telemetry 

packets. Each ICU is connected to the SVM with two SpaceWire links (one main and 

one redundant) for telecommand reception and telemetry transmission.  

In the current design, two SpaceWire routers are foreseen in each ICU. An alternative 

solution, which consists to put the SpaceWire router function outside the ICU box, 

with the aim of reducing the number of links directly connected to the ICU and also to 

improve the redundancy scheme, will be studied in the definition phase of the 

mission. 

In the global architecture, the ICUs are also in charge of a second level of data 

reduction. All the flux and centroids sent by the normal DPUs and the fast DPUs at 

the cadence respectively of 25 seconds and 2.5 seconds are cross-checked, stacked 

and temporally averaged in order to produce the final telemetry at the cadence 

required by the science (50 seconds and 600 seconds). Lastly, before being 

transmitted to the SVM, the data are compressed using a lossless compression 

algorithm. 

In order to reduce the complexity of the DPUs, the in-flight maintenance of the DPU 

application software is delegated to the ICUs. The DPUs don’t have locally an 

EEPROM and don’t manage the maintenance of the application software. The ICUs 

are responsible for storing in their EEPROM the DPU application software and 

managing its maintenance (changing the content of the EEPROM, adding a new 
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version of the application software in EEPROM). After a switch-on or a DPU reset, 

during the boot process, the DPU boot loader (stored in the DPU PROM) loads the 

Application Software code and data over the SpaceWire link from the ICU. 

5 CONCLUSION 

The design of the PLATO payload data processing system is well advanced. 

However, several issues must still be consolidated until the end of the definition phase 

and the final selection of the Cosmic Vision M-class missions by ESA which is 

expected for June 2011. Firstly, the technical budgets of each subsystem (DPUs, 

ICUs) concerning the CPU resources, the power consumption, the surface and the 

mass will be refined. The design of the different units will be then detailed. Finally, 

the critical functions and interfaces which have been identified like the high-

throughput interface between the FEEs and the DPUs of the normal cameras will be 

prototyped. 

The future studies will be pursued always keeping in mind the two main principles 

that have governed the preliminary studies. The first principle is to have standard 

interfaces between the different units of the payload in order to minimize the specific 

developments at the instrument level and at the test equipment level, to simplify the 

tests and finally to reduce the global cost. As we have shown in this paper, SpaceWire 

technology is the ideal response to this requirement. The second principle is to get the 

most compact design and the less power expensive solution possible at the subsystem 

level. There are 34 DPUs: 1 watt saved is 34 watts saved. The goal is then to 

minimize as much as possible the complexity of the DPUs: if a function can be 

delegated to the ICU, then it shall be delegated to the ICU. 

The PLATO definition phase will be also an opportunity to address the complex 

question of the data processing system AIT (Assembly, Integration and Tests) and to 

propose a global approach for conducting these activities. 
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ABSTRACT 

We are developing Soft X-ray Imager (SXI), an X-ray charge-coupled device (CCD) 

camera system on board the ASTRO-H mission. It has a SpaceWire (SpW) interface 

and will be installed in the satellite’s SpW network. In this paper, we report the results 

of the breadboard model development and present the engineering model design and 

architecture under consideration. 

1 INTRODUCTION 

  ASTRO-H, Japan’s 6th X-ray astronomical satellite, is planned for launch in 

FY2013. It employs SpaceWire (SpW)-based information network system. And the 

onboard equipment communicates through the SpW network. The Soft X-ray Imager 

(SXI), an X-ray charge-coupled device (CCD) camera system in conjunction with the 

X-ray telescope, is one of the observation instruments. Therefore, the SXI also have to 

be designed on the assumption that it will be installed in the satellite’s SpW network. 

Since the SpW-based X-ray CCD camera system is a new item we develop, the 

breadboard model (BBM) has been developed first, and the engineering model (EM) 

design is currently designed. 
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2 SXI DIGITAL ELECTRONICS 

Figure 1 shows the component diagram 

of the SXI electronics. Four X-ray 

CCD chips are in the focal plane, and 

each CCD chip has the identical 

driving and readout circuits.  The 

digital electronics is divided into two 

processing units, an FPGA-based unit 

(SXI-PE; Pixel-processing Electronics) 

and a CPU-based unit (SXI-DE; Digital 

Electronics). Both of them have SpW 

I/Fs and communicate with each other 

via SpW network. By RMAP commands from the SXI-DE, the SXI-PE controls 

peripheral devices, processes CCD pixel data, and collects HK information. The SXI-

DE also handles advanced data processing such as an X-ray event extraction. 

2.1 THE HARDWARE 

The hardware devices for the SXI-PE and the SXI-DE are a Mission I/O (MIO) board 

and a Mission DE (MDE) board, respectively. “Mission” means that these devices 

have been developed as BUS equipment in the ASTRO-H mission. That enables us to 

reduce the costs, speed up the development time, and improve the reliability. Figure 2 

shows a schematic block diagram of the MIO and MDE boards. The MIO consists of 

“User FPGA” in which implemented user logic to serve the purpose of each 

instrument and “SpW FPGA” that has SpW interfaces. Instrument-specific programs 

and common SpW interfaces are also installed in the MDE. 

2.2 THE BBM DEVELOPMENT 

We have manufactured the breadboard model (BBM) of the SpW-based CCD camera 

system, whose DAQ structure is described in Fujinaga et al. 2010 (this conference) in 

detail. While the BBM hardware is slightly different from those of we show in Figure 

2, the basic configuration and functional allocation are similar. We have developed 

minimum required functions to obtain CCD raw image and implemented them in the 

BBM system. The BBM works well in the lab system. 

3 THE ENGINEERING MODEL DESIGN 

  We have been working to design the SXI engineering model, which is a SpW/RMAP 

-based architecture of CCD driving and data handling using the SXI-PE and the SXI-

DE. The block diagram of the SXI-PE processing unit is shown in Figure 4.  

Figure 1: Schematic block diagram of SXI 

electronics, which consists of four identical 

circuits and a CPU unit. 

Figure 2: Schematic block diagram of the MIO board and the MDE board. 
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3.1 ARCHITECTURE 

  Here, we represent functions closely associated with SpaceWire/RMAP 

communication, while there are a lot of SXI-specific modules implemented in the 

User FPGA of the SXI-PE. In the current EM design of the MIO board, a relatively 

large-capacity memory (64 MByte SD-RAM) is connected to only the SpW FPGA.    

  However, the CCD data processed in the User FPGA need to be transferred to the 

memory. Therefore, to utilize an intervening (board-local) bus between User FPGA 

and SpW FPGA efficiently, we introduced buffering modules, “Bus I/F agents”, there. 

The Bus I/F agents have double buffers and regulate the data flow from the upstream 

to the downstream. Read and write from and to the double buffers are controlled by 

“Address manager”. When the one-sided buffer of the Bus I/F agent is filled with the 

processed data, the address manager switches the buffers’ I/O, sets the destination 

address, and triggers the date transfer to the target SD-RAM in accordance with 

established priorities of the stored data. The SXI-DE, on the other hand, access stored 

data in the SD-RAM by multiple RMAP read. The RMAP read is kept waiting by the 

SpW FPGA of the MIO while the target buffer memory is updating. The interface is 

“Exposure information” in the SD-RAM. After all the data transfer from the User 

FPGA to the SD-RAM is complete, the “Address Manager” unlocks the exposure 

information. HK data are collected during periodic intervals in the spare time. 

3.2 SPACEWIRE NETWORK TOPOLOGY 

We are also considering the SpW 

network topology for SXI to avoid 

single point of failure (SPOF) for the 

SXI-DE since SXI has only one CPU 

unit. Figure 3 shows the current 

design of he SpW topology to realize 

redundant configuration for the SXI 

system. Connecting at least two 

MIOs to SpaceWire routers (A and 

B), the route to use the common 

backup DE (X-MDE) via the SpW 

router is secured. 
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Figure 3: SpaceWire network topology for the 
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Figure 4: The block diagram of SXI-PE processing unit, which is for one CCD chip. Modules 

with the same function are displayed as layers. 
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Exhibitors  

 

Since 1990, Shimafuji Electric has been developing 

microcomputer boards including transmission, graphics and 

other complex peripheral functions and also producing small 

amount of products for some OEMs. We have more chances to 

develop evaluation boards for various RISCs and intelligent 

peripheral functions devices and T-Engine boards/T-Engine 

appliance products these days. 

We developed the Space Wire compliant cubic computer, Space Cube with Japan Aerospace 

Exploration Agency, 5 years ago, and we have some Space Wire function boards, like 

Sampling ADC, Digital I/O, and ETC. 

 We also had developed the world smallest one board computer (50mm x 50mm) that power 

consumption is 1.5W (or smaller). 

 

 

 

 

  

STAR-Dundee specialises in supporting users and 

developers of SpaceWire technology by providing: 

 Development equipment: Our products cover everything needed to design, 

develop, integrate and test SpaceWire sub-systems. 

 Chips and IP Cores: Enabling our customers to develop their own flight sub-

systems and providing custom IP cores to fulfil specific customer needs 

 Bespoke Design Services: Equipment and design of electronic circuit boards for 

custom requirements. 

 SpaceWire Training: Onsite expert tuition direct from our experienced engineers, 

tailored to suit the customer 

The STAR-Dundee team has leading expertise in all areas of SpaceWire technology. Our 

commitment is to help our customers quickly and efficiently get up to speed with SpaceWire 

technology and support the full development life cycle.  

 

Website: www.star-dundee.com 

Email: enquiries@star-dundee.com 
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www.aeroflex.com/HiRel 

 

Aeroflex Colorado Springs is a supplier of integrated circuits 

and custom circuit card assemblies. We supply a broad range of 

standard products for HiRel applications including a LEON 3FT 

microprocessor, logic, FPGAs, memories, serial communication 

interfaces for MIL-STD-1553, 1773, Clocks, an LVDS family of 

products and our SpaceWire products -Transceivers, Protocol IP, Routers. Our RadHard-by-

Design Digital and Mixed-Signal ASICs handle design complexities up to 3,000,000 usable 

gates. 

 

Aeroflex Gaisler is a provider of SoC solutions and IP-cores for exceptionally competitive 

markets such as Aerospace, Military and Commercial applications. The Aeroflex Gaisler's IP-

cores consist of user-customizable 32-bit SPARC V8 processor and floating-point-unit cores, 

SpaceWire cores, peripheral IP-cores and associated software and development tools. 

Aeroflex Gaisler solutions help companies develop application-specific SoCs that are highly 

competitive for customer specific applications. Gaisler Research's personnel have extended 

design experience, and have been involved in establishing standards for ASIC and FPGA 

development. 

 

 

 

www.4links.co.uk 

 

    * 4Links test equipment is the de-facto SpaceWire reference, with unparalleled maturity in 

our design and an unparalleled record of finding errors, and providing the information to 

correct them; 

    * The family includes bridges, diagnostic interfaces, routing switches, and monitors, a time 

interface (IRIG-B) plus an RMAP responder to give hardware response times - all controlled 

from a single (possibly remote) PC; 

    * Products interface to Ethernet and Internet, able to be interfaced with virtually any 

computer, any OS, any where; 

    * All products are available with connectors for synchronization and triggers, so that 

multiple test units can be synchronized and recordings time tagged consistently between 

different computers and discs. 

    * All products are reconfigurable, using a plug-in memory card, to provide a new or 

enhanced version or a completely different function to allow hardware re-use for lower cost 

of ownership. 

 

4Links Limited, Suite EU2, Bletchley Park, Milton Keynes, MK3 6EB, United Kingdom 

+44 1908 642001 

info@4Links.co.uk 

www.4Links.co.uk 
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FRI Submicron was created in 1989, located in Zelenograd (Moscow) 

and more than 400 employees are working there. FRI Submicron designs 

and produces components, modules, devices of the computational 

embedded equipment for different real-time objects (spacecrafts and 

aircrafts including).  It produces devices for about 20 space objects per a year and all 

processes are certificated in accordance with ISO 9001-2001. Submicron solves the following 

tasks: development of equipment for space control systems, development of equipment for 

aviation control and detection systems, development of equipment of a satellite 

communication and navigation, development of reception and processing systems of the 

radar-tracking and hydroaudio information, development of the tool, bench and built 

software. 

 

Yuzhnaya promyshlennaya zona, proezd 4806, building 4, stroenie 2 

Zelenograd, Moscow, 124460, Russian Federation 

 

http://submicron.ru 

Phone 1           +7 499 731 9651 

Phone 2           +7 903 724 2649 

Fax                  +7 499 731 2753 

E-mail              submicron@se.zgrad.ru 

 

 

 

 

“ELVEES" RnD Center is a leading Russian ASIC design house, number one in the 

Multicore digital signal processors and «systems on a chip (SOC)» with SpaceWire links: 

routers, adapters, controllers – the largest chipset in Russia for the space and 

telecommunications, navigation and embedded systems. ELVEES has its own innovative 

MULTICORE IC design platform which includes a great 0.25 - 0.65u silicon proven IP - 

cores library (SpaceWire IP – cores also), based on the commercial 0.25-u CMOS 

RadHard/temperature stability libraries suitable for space. ELVEES provides for its chips the 

Tools and Application Software for image compression, adaptive signal processing, optical 

and radar monitoring, artificial vision, telecommunications and navigation applications. 
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Contact: Jean-François Cazaux 

Tel.: +33 (0)5 61 41 77 03 

Email: cazaux@skylab-corporate.com 

         Web: www.skylab-corporate.com 

SKYLAB Industries is a French company of 15 employees located in Toulouse, the 

Aerospace Valley country. Our team helps our customers to succeed and grow in aeronautics 

and space projects. We give them a competitive advantage thanks to our know-how and 

experience focused on embedded systems development. Our main activities are:  

- Industrial Engineering Department (IPSE) designs and realizes mains supply 

systems on VIP aircrafts; 

- Projects Expertise Department (IQAS) offers services in Quality and Product 

Assurance management; 

- Software and Electronics Department (EASE) develops products and solutions for 

embedded equipments tests. 

Skylab Industries acquires expertise and invests in research and development to fuel 

products innovation. For instance, our engineers worked for almost one year, in partnership 

with CEA/IRFU for the IP core, on a new products line for test equipments using SpaceWire 

protocol: compatibleCable
4SpW

, PCI
4SpW

 board, PCI Express
4SpW

 board, smartCable
4SpW

 

and TraffiController
4SpW

. 

 

 

 

 

 

 

 

Actel Corporation (USA, California) is a global leader in radiation-tolerant FPGA 

development and production for aerospace applications. High density gate arrays both 

reprogrammable and one-time programmable are best possible solution to develop 

customized onboard electronics using "system-on-chip" technology. Actel technical support 

and sales center in Russia (Actel.ru, St.Petersburg) is involved in custom design of fault-

tolerant flight computers and SpaceWire technology practical application. 
 

Contacts: Address: 212, Moskovsky pr., Saint-Petersburg, Russia, 196066  

Contact telephone number: +7 812 740-62-09   

Fax number: +7 812 740-62-09 

Web-site: www.actel.ru 

 e-mail: sales@actel.ru 
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NEC Corporation is one of the world's leading providers of Internet, broadband network 

and enterprise business solutions dedicated to meeting the specialized needs of a diversified 

global base of customers. NEC delivers tailored solutions in the key fields of computer, 

networking and electron devices, by integrating its technical strengths in IT and Networks, 

and by providing advanced semiconductor solutions through NEC Electronics Corporation. 

The NEC Group employs more than 140,000 people worldwide. For additional information, 

please visit the NEC Web site at: www.nec.com. 

Contacts:   Kosuke Yamauchi, +81-3-3798-6511      k-yamauchi@ce.jp.nec.com 

 Joseph Jasper, +81-3-3798-6511              j-jasper@ax.jp.nec.com 
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